关于Weyl积和模1的均匀分布。

Pub Date : 2018-01-01 Epub Date: 2017-09-26 DOI:10.1007/s00605-017-1100-8
Christoph Aistleitner, Gerhard Larcher, Friedrich Pillichshammer, Sumaia Saad Eddin, Robert F Tichy
{"title":"关于Weyl积和模1的均匀分布。","authors":"Christoph Aistleitner, Gerhard Larcher, Friedrich Pillichshammer, Sumaia Saad Eddin, Robert F Tichy","doi":"10.1007/s00605-017-1100-8","DOIUrl":null,"url":null,"abstract":"<p><p>In the present paper we study the asymptotic behavior of trigonometric products of the form <math> <mrow><msubsup><mo>∏</mo> <mrow><mi>k</mi> <mo>=</mo> <mn>1</mn></mrow> <mi>N</mi></msubsup> <mn>2</mn> <mo>sin</mo> <mrow><mo>(</mo> <mi>π</mi> <msub><mi>x</mi> <mi>k</mi></msub> <mo>)</mo></mrow> </mrow> </math> for <math><mrow><mi>N</mi> <mo>→</mo> <mi>∞</mi></mrow> </math> , where the numbers <math><mrow><mi>ω</mi> <mo>=</mo> <msubsup><mrow><mo>(</mo> <msub><mi>x</mi> <mi>k</mi></msub> <mo>)</mo></mrow> <mrow><mi>k</mi> <mo>=</mo> <mn>1</mn></mrow> <mi>N</mi></msubsup> </mrow> </math> are evenly distributed in the unit interval [0, 1]. The main result are matching lower and upper bounds for such products in terms of the star-discrepancy of the underlying points <math><mi>ω</mi></math> , thereby improving earlier results obtained by Hlawka (Number theory and analysis (Papers in Honor of Edmund Landau, Plenum, New York), 97-118, 1969). Furthermore, we consider the special cases when the points <math><mi>ω</mi></math> are the initial segment of a Kronecker or van der Corput sequences The paper concludes with some probabilistic analogues.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00605-017-1100-8","citationCount":"12","resultStr":"{\"title\":\"On Weyl products and uniform distribution modulo one.\",\"authors\":\"Christoph Aistleitner, Gerhard Larcher, Friedrich Pillichshammer, Sumaia Saad Eddin, Robert F Tichy\",\"doi\":\"10.1007/s00605-017-1100-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the present paper we study the asymptotic behavior of trigonometric products of the form <math> <mrow><msubsup><mo>∏</mo> <mrow><mi>k</mi> <mo>=</mo> <mn>1</mn></mrow> <mi>N</mi></msubsup> <mn>2</mn> <mo>sin</mo> <mrow><mo>(</mo> <mi>π</mi> <msub><mi>x</mi> <mi>k</mi></msub> <mo>)</mo></mrow> </mrow> </math> for <math><mrow><mi>N</mi> <mo>→</mo> <mi>∞</mi></mrow> </math> , where the numbers <math><mrow><mi>ω</mi> <mo>=</mo> <msubsup><mrow><mo>(</mo> <msub><mi>x</mi> <mi>k</mi></msub> <mo>)</mo></mrow> <mrow><mi>k</mi> <mo>=</mo> <mn>1</mn></mrow> <mi>N</mi></msubsup> </mrow> </math> are evenly distributed in the unit interval [0, 1]. The main result are matching lower and upper bounds for such products in terms of the star-discrepancy of the underlying points <math><mi>ω</mi></math> , thereby improving earlier results obtained by Hlawka (Number theory and analysis (Papers in Honor of Edmund Landau, Plenum, New York), 97-118, 1969). Furthermore, we consider the special cases when the points <math><mi>ω</mi></math> are the initial segment of a Kronecker or van der Corput sequences The paper concludes with some probabilistic analogues.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00605-017-1100-8\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-017-1100-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/9/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00605-017-1100-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/9/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文研究了πk=1N2sin(πxk)形式的三角乘积对N→ ∞ , 其中数ω=(xk)k=1N在单位区间[0,1]中均匀分布。主要结果是根据基础点ω的恒星差异匹配这些乘积的下限和上限,从而改进了Hlawka早期获得的结果(数论和分析(Papers in Honor of Edmund Landau,Plenum,New York),97-1181969)。此外,我们还考虑了当点ω是Kronecker或van der Corput序列的初始段时的特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On Weyl products and uniform distribution modulo one.

On Weyl products and uniform distribution modulo one.

On Weyl products and uniform distribution modulo one.

分享
查看原文
On Weyl products and uniform distribution modulo one.

In the present paper we study the asymptotic behavior of trigonometric products of the form k = 1 N 2 sin ( π x k ) for N , where the numbers ω = ( x k ) k = 1 N are evenly distributed in the unit interval [0, 1]. The main result are matching lower and upper bounds for such products in terms of the star-discrepancy of the underlying points ω , thereby improving earlier results obtained by Hlawka (Number theory and analysis (Papers in Honor of Edmund Landau, Plenum, New York), 97-118, 1969). Furthermore, we consider the special cases when the points ω are the initial segment of a Kronecker or van der Corput sequences The paper concludes with some probabilistic analogues.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信