{"title":"星际介质(ISM)中碳化二亚胺形成的可能反应机制及碳化二亚胺极化率的理论研究。","authors":"Manisha Yadav, Shivani, Alka Misra, Poonam Tandon","doi":"10.1007/s11084-019-09577-6","DOIUrl":null,"url":null,"abstract":"<p><p>The Structure of carbodiimide has been studied by using quantum chemical methods. Carbodiimide (HNCNH) has been detected towards Sagittarius B2 (N) in interstellar medium (ISM). Two reaction mechanisms have been proposed to study the formation of interstellar Carbodiimide. The first reaction mechanism is based on molecule-radical and the second one is a radical-radical mechanism, through previously detected interstellar molecules or radicals. Quantum chemical calculations have been performed by using density functional theory (DFT) and Moller-Plesset second order perturbation (MP2) theory, in gas phase as well as in polarizable continuum model (PCM). The proposed reaction paths are exothermic and barrierless which indicates the possibility of carbodiimide formation in ISM. Several basis sets have been used to verify the validity and accuracy of the results. The isotropic and anisotropic polarizabilities of carbodiimide have been calculated from relevant tensor components for both reaction mechanisms with the help of data obtained by DFT/B3LYP and MP2 methods using aug-cc-pVTZ basis sets in gaseous phase as well as in PCM.</p>","PeriodicalId":19614,"journal":{"name":"Origins of Life and Evolution of Biospheres","volume":"49 1-2","pages":"89-103"},"PeriodicalIF":1.9000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11084-019-09577-6","citationCount":"3","resultStr":"{\"title\":\"Theoretical Study of Possible Reaction Mechanisms for the Formation of Carbodiimide in the Interstellar Medium (ISM) and Polarizabilities of Carbodiimide.\",\"authors\":\"Manisha Yadav, Shivani, Alka Misra, Poonam Tandon\",\"doi\":\"10.1007/s11084-019-09577-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Structure of carbodiimide has been studied by using quantum chemical methods. Carbodiimide (HNCNH) has been detected towards Sagittarius B2 (N) in interstellar medium (ISM). Two reaction mechanisms have been proposed to study the formation of interstellar Carbodiimide. The first reaction mechanism is based on molecule-radical and the second one is a radical-radical mechanism, through previously detected interstellar molecules or radicals. Quantum chemical calculations have been performed by using density functional theory (DFT) and Moller-Plesset second order perturbation (MP2) theory, in gas phase as well as in polarizable continuum model (PCM). The proposed reaction paths are exothermic and barrierless which indicates the possibility of carbodiimide formation in ISM. Several basis sets have been used to verify the validity and accuracy of the results. The isotropic and anisotropic polarizabilities of carbodiimide have been calculated from relevant tensor components for both reaction mechanisms with the help of data obtained by DFT/B3LYP and MP2 methods using aug-cc-pVTZ basis sets in gaseous phase as well as in PCM.</p>\",\"PeriodicalId\":19614,\"journal\":{\"name\":\"Origins of Life and Evolution of Biospheres\",\"volume\":\"49 1-2\",\"pages\":\"89-103\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s11084-019-09577-6\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Origins of Life and Evolution of Biospheres\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s11084-019-09577-6\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/6/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Origins of Life and Evolution of Biospheres","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11084-019-09577-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/6/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Theoretical Study of Possible Reaction Mechanisms for the Formation of Carbodiimide in the Interstellar Medium (ISM) and Polarizabilities of Carbodiimide.
The Structure of carbodiimide has been studied by using quantum chemical methods. Carbodiimide (HNCNH) has been detected towards Sagittarius B2 (N) in interstellar medium (ISM). Two reaction mechanisms have been proposed to study the formation of interstellar Carbodiimide. The first reaction mechanism is based on molecule-radical and the second one is a radical-radical mechanism, through previously detected interstellar molecules or radicals. Quantum chemical calculations have been performed by using density functional theory (DFT) and Moller-Plesset second order perturbation (MP2) theory, in gas phase as well as in polarizable continuum model (PCM). The proposed reaction paths are exothermic and barrierless which indicates the possibility of carbodiimide formation in ISM. Several basis sets have been used to verify the validity and accuracy of the results. The isotropic and anisotropic polarizabilities of carbodiimide have been calculated from relevant tensor components for both reaction mechanisms with the help of data obtained by DFT/B3LYP and MP2 methods using aug-cc-pVTZ basis sets in gaseous phase as well as in PCM.
期刊介绍:
The subject of the origin and early evolution of life is an inseparable part of the general discipline of Astrobiology. The journal Origins of Life and Evolution of Biospheres places special importance on the interconnection as well as the interdisciplinary nature of these fields, as is reflected in its subject coverage. While any scientific study which contributes to our understanding of the origins, evolution and distribution of life in the Universe is suitable for inclusion in the journal, some examples of important areas of interest are: prebiotic chemistry and the nature of Earth''s early environment, self-replicating and self-organizing systems, the theory of the RNA world and of other possible precursor systems, and the problem of the origin of the genetic code. Early evolution of life - as revealed by such techniques as the elucidation of biochemical pathways, molecular phylogeny, the study of Precambrian sediments and fossils and of major innovations in microbial evolution - forms a second focus. As a larger and more general context for these areas, Astrobiology refers to the origin and evolution of life in a cosmic setting, and includes interstellar chemistry, planetary atmospheres and habitable zones, the organic chemistry of comets, meteorites, asteroids and other small bodies, biological adaptation to extreme environments, life detection and related areas. Experimental papers, theoretical articles and authorative literature reviews are all appropriate forms for submission to the journal. In the coming years, Astrobiology will play an even greater role in defining the journal''s coverage and keeping Origins of Life and Evolution of Biospheres well-placed in this growing interdisciplinary field.