具有不可链接模式间约束的CP张量分解。

Jette Henderson, Bradley A Malin, Joshua C Denny, Abel N Kho, Jimeng Sun, Joydeep Ghosh, Joyce C Ho
{"title":"具有不可链接模式间约束的CP张量分解。","authors":"Jette Henderson,&nbsp;Bradley A Malin,&nbsp;Joshua C Denny,&nbsp;Abel N Kho,&nbsp;Jimeng Sun,&nbsp;Joydeep Ghosh,&nbsp;Joyce C Ho","doi":"10.1137/1.9781611975673.80","DOIUrl":null,"url":null,"abstract":"<p><p>Tensor factorization is a methodology that is applied in a variety of fields, ranging from climate modeling to medical informatics. A tensor is an <i>n</i>-way array that captures the relationship between <i>n</i> objects. These multiway arrays can be factored to study the underlying bases present in the data. Two challenges arising in tensor factorization are 1) the resulting factors can be noisy and highly overlapping with one another and 2) they may not map to insights within a domain. However, incorporating supervision to increase the number of insightful factors can be costly in terms of the time and domain expertise necessary for gathering labels or domain-specific constraints. To meet these challenges, we introduce CANDECOMP/PARAFAC (CP) tensor factorization with Cannot-Link Intermode Constraints (CP-CLIC), a framework that achieves succinct, diverse, interpretable factors. This is accomplished by gradually learning constraints that are verified with auxiliary information during the decomposition process. We demonstrate CP-CLIC's potential to extract sparse, diverse, and interpretable factors through experiments on simulated data and a real-world application in medical informatics.</p>","PeriodicalId":74533,"journal":{"name":"Proceedings of the ... SIAM International Conference on Data Mining. SIAM International Conference on Data Mining","volume":"2019 ","pages":"711-719"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1137/1.9781611975673.80","citationCount":"2","resultStr":"{\"title\":\"CP Tensor Decomposition with Cannot-Link Intermode Constraints.\",\"authors\":\"Jette Henderson,&nbsp;Bradley A Malin,&nbsp;Joshua C Denny,&nbsp;Abel N Kho,&nbsp;Jimeng Sun,&nbsp;Joydeep Ghosh,&nbsp;Joyce C Ho\",\"doi\":\"10.1137/1.9781611975673.80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tensor factorization is a methodology that is applied in a variety of fields, ranging from climate modeling to medical informatics. A tensor is an <i>n</i>-way array that captures the relationship between <i>n</i> objects. These multiway arrays can be factored to study the underlying bases present in the data. Two challenges arising in tensor factorization are 1) the resulting factors can be noisy and highly overlapping with one another and 2) they may not map to insights within a domain. However, incorporating supervision to increase the number of insightful factors can be costly in terms of the time and domain expertise necessary for gathering labels or domain-specific constraints. To meet these challenges, we introduce CANDECOMP/PARAFAC (CP) tensor factorization with Cannot-Link Intermode Constraints (CP-CLIC), a framework that achieves succinct, diverse, interpretable factors. This is accomplished by gradually learning constraints that are verified with auxiliary information during the decomposition process. We demonstrate CP-CLIC's potential to extract sparse, diverse, and interpretable factors through experiments on simulated data and a real-world application in medical informatics.</p>\",\"PeriodicalId\":74533,\"journal\":{\"name\":\"Proceedings of the ... SIAM International Conference on Data Mining. SIAM International Conference on Data Mining\",\"volume\":\"2019 \",\"pages\":\"711-719\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1137/1.9781611975673.80\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... SIAM International Conference on Data Mining. SIAM International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611975673.80\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... SIAM International Conference on Data Mining. SIAM International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611975673.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

张量因子分解是一种应用于从气候建模到医学信息学等多个领域的方法。张量是一个n向数组,用于捕捉n个对象之间的关系。这些多路阵列可以被分解以研究数据中存在的底层基底。张量因子分解中出现的两个挑战是:1)结果因子可能是有噪声的,并且彼此高度重叠;2)它们可能无法映射到域内的见解。然而,就收集标签或特定领域限制所需的时间和领域专业知识而言,纳入监督以增加有洞察力的因素的数量可能代价高昂。为了应对这些挑战,我们引入了具有不可链接模式间约束的CANDECOMP/PARAFAC(CP)张量分解(CP-CLIC),这是一个实现简洁、多样、可解释因素的框架。这是通过逐步学习在分解过程中用辅助信息验证的约束来实现的。我们通过对模拟数据的实验和在医学信息学中的实际应用,展示了CP-CLIC提取稀疏、多样和可解释因素的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

CP Tensor Decomposition with Cannot-Link Intermode Constraints.

CP Tensor Decomposition with Cannot-Link Intermode Constraints.

CP Tensor Decomposition with Cannot-Link Intermode Constraints.

Tensor factorization is a methodology that is applied in a variety of fields, ranging from climate modeling to medical informatics. A tensor is an n-way array that captures the relationship between n objects. These multiway arrays can be factored to study the underlying bases present in the data. Two challenges arising in tensor factorization are 1) the resulting factors can be noisy and highly overlapping with one another and 2) they may not map to insights within a domain. However, incorporating supervision to increase the number of insightful factors can be costly in terms of the time and domain expertise necessary for gathering labels or domain-specific constraints. To meet these challenges, we introduce CANDECOMP/PARAFAC (CP) tensor factorization with Cannot-Link Intermode Constraints (CP-CLIC), a framework that achieves succinct, diverse, interpretable factors. This is accomplished by gradually learning constraints that are verified with auxiliary information during the decomposition process. We demonstrate CP-CLIC's potential to extract sparse, diverse, and interpretable factors through experiments on simulated data and a real-world application in medical informatics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信