{"title":"基于线性基础学习器的提升位置和比例模型的显著性检验。","authors":"Tobias Hepp, Matthias Schmid, Andreas Mayr","doi":"10.1515/ijb-2018-0110","DOIUrl":null,"url":null,"abstract":"<p><p>Generalized additive models for location scale and shape (GAMLSS) offer very flexible solutions to a wide range of statistical analysis problems, but can be challenging in terms of proper model specification. This complex task can be simplified using regularization techniques such as gradient boosting algorithms, but the estimates derived from such models are shrunken towards zero and it is consequently not straightforward to calculate proper confidence intervals or test statistics. In this article, we propose two strategies to obtain p-values for linear effect estimates for Gaussian location and scale models based on permutation tests and a parametric bootstrap approach. These procedures can provide a solution for one of the remaining problems in the application of gradient boosting algorithms for distributional regression in biostatistical data analyses. Results from extensive simulations indicate that in low-dimensional data both suggested approaches are able to hold the type-I error threshold and provide reasonable test power comparable to the Wald-type test for maximum likelihood inference. In high-dimensional data, when gradient boosting is the only feasible inference for this model class, the power decreases but the type-I error is still under control. In addition, we demonstrate the application of both tests in an epidemiological study to analyse the impact of physical exercise on both average and the stability of the lung function of elderly people in Germany.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"15 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2018-0110","citationCount":"8","resultStr":"{\"title\":\"Significance Tests for Boosted Location and Scale Models with Linear Base-Learners.\",\"authors\":\"Tobias Hepp, Matthias Schmid, Andreas Mayr\",\"doi\":\"10.1515/ijb-2018-0110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Generalized additive models for location scale and shape (GAMLSS) offer very flexible solutions to a wide range of statistical analysis problems, but can be challenging in terms of proper model specification. This complex task can be simplified using regularization techniques such as gradient boosting algorithms, but the estimates derived from such models are shrunken towards zero and it is consequently not straightforward to calculate proper confidence intervals or test statistics. In this article, we propose two strategies to obtain p-values for linear effect estimates for Gaussian location and scale models based on permutation tests and a parametric bootstrap approach. These procedures can provide a solution for one of the remaining problems in the application of gradient boosting algorithms for distributional regression in biostatistical data analyses. Results from extensive simulations indicate that in low-dimensional data both suggested approaches are able to hold the type-I error threshold and provide reasonable test power comparable to the Wald-type test for maximum likelihood inference. In high-dimensional data, when gradient boosting is the only feasible inference for this model class, the power decreases but the type-I error is still under control. In addition, we demonstrate the application of both tests in an epidemiological study to analyse the impact of physical exercise on both average and the stability of the lung function of elderly people in Germany.</p>\",\"PeriodicalId\":49058,\"journal\":{\"name\":\"International Journal of Biostatistics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/ijb-2018-0110\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2018-0110\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2018-0110","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Significance Tests for Boosted Location and Scale Models with Linear Base-Learners.
Generalized additive models for location scale and shape (GAMLSS) offer very flexible solutions to a wide range of statistical analysis problems, but can be challenging in terms of proper model specification. This complex task can be simplified using regularization techniques such as gradient boosting algorithms, but the estimates derived from such models are shrunken towards zero and it is consequently not straightforward to calculate proper confidence intervals or test statistics. In this article, we propose two strategies to obtain p-values for linear effect estimates for Gaussian location and scale models based on permutation tests and a parametric bootstrap approach. These procedures can provide a solution for one of the remaining problems in the application of gradient boosting algorithms for distributional regression in biostatistical data analyses. Results from extensive simulations indicate that in low-dimensional data both suggested approaches are able to hold the type-I error threshold and provide reasonable test power comparable to the Wald-type test for maximum likelihood inference. In high-dimensional data, when gradient boosting is the only feasible inference for this model class, the power decreases but the type-I error is still under control. In addition, we demonstrate the application of both tests in an epidemiological study to analyse the impact of physical exercise on both average and the stability of the lung function of elderly people in Germany.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.