下载PDF
{"title":"胚胎器官细胞制备的单细胞RNA测序","authors":"Rei Sekiguchi, Belinda Hauser","doi":"10.1002/cpcb.86","DOIUrl":null,"url":null,"abstract":"<p>Although single-cell RNA sequencing (scRNA-seq) has become one of the most powerful methods available for transcriptome analysis, the quality of scRNA-seq data largely depends on cell preparation. Cell preparation from cultured cells and tissues requires different methods because of the inherent differences between these two categories of cells. Compared to cultured cells, tissues have more extracellular matrix, and the cells are generally more adherent and thus difficult to dissociate. The challenge is to achieve sufficient dissociation, cell counts, and viability all at the same time. This protocol describes approaches that help achieve these goals. These include a cold dissociation technique using cryophilic proteases active at cold temperature, timing of trituration during protease digestion, as well as filtration and washing methods that optimize cell viability and retention. Materials and equipment that optimize the process will also be discussed. © 2019 by John Wiley & Sons, Inc.</p>","PeriodicalId":40051,"journal":{"name":"Current Protocols in Cell Biology","volume":"83 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpcb.86","citationCount":"7","resultStr":"{\"title\":\"Preparation of Cells from Embryonic Organs for Single-Cell RNA Sequencing\",\"authors\":\"Rei Sekiguchi, Belinda Hauser\",\"doi\":\"10.1002/cpcb.86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Although single-cell RNA sequencing (scRNA-seq) has become one of the most powerful methods available for transcriptome analysis, the quality of scRNA-seq data largely depends on cell preparation. Cell preparation from cultured cells and tissues requires different methods because of the inherent differences between these two categories of cells. Compared to cultured cells, tissues have more extracellular matrix, and the cells are generally more adherent and thus difficult to dissociate. The challenge is to achieve sufficient dissociation, cell counts, and viability all at the same time. This protocol describes approaches that help achieve these goals. These include a cold dissociation technique using cryophilic proteases active at cold temperature, timing of trituration during protease digestion, as well as filtration and washing methods that optimize cell viability and retention. Materials and equipment that optimize the process will also be discussed. © 2019 by John Wiley & Sons, Inc.</p>\",\"PeriodicalId\":40051,\"journal\":{\"name\":\"Current Protocols in Cell Biology\",\"volume\":\"83 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cpcb.86\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Protocols in Cell Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpcb.86\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpcb.86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 7
引用
批量引用