扩展单调发电机设置中具有lsamvy跳变的BSDEs的存在唯一性及比较结果。

IF 1 2区 数学 Q3 STATISTICS & PROBABILITY
Christel Geiss, Alexander Steinicke
{"title":"扩展单调发电机设置中具有lsamvy跳变的BSDEs的存在唯一性及比较结果。","authors":"Christel Geiss,&nbsp;Alexander Steinicke","doi":"10.1186/s41546-018-0034-y","DOIUrl":null,"url":null,"abstract":"<p><p>We show that the comparison results for a backward SDE with jumps established in Royer (Stoch. Process. Appl 116: 1358-1376, 2006) and Yin and Mao (J. Math. Anal. Appl 346: 345-358, 2008) hold under more simplified conditions. Moreover, we prove existence and uniqueness allowing the coefficients in the linear growth- and monotonicity-condition for the generator to be random and time-dependent. In the <i>L</i> <sup>2</sup>-case with linear growth, this also generalizes the results of Kruse and Popier (Stochastics 88: 491-539, 2016). For the proof of the comparison result, we introduce an approximation technique: Given a BSDE driven by Brownian motion and Poisson random measure, we approximate it by BSDEs where the Poisson random measure admits only jumps of size larger than 1/<i>n</i>.</p>","PeriodicalId":42330,"journal":{"name":"Probability Uncertainty and Quantitative Risk","volume":"3 1","pages":"9"},"PeriodicalIF":1.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s41546-018-0034-y","citationCount":"9","resultStr":"{\"title\":\"Existence, uniqueness and comparison results for BSDEs with Lévy jumps in an extended monotonic generator setting.\",\"authors\":\"Christel Geiss,&nbsp;Alexander Steinicke\",\"doi\":\"10.1186/s41546-018-0034-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We show that the comparison results for a backward SDE with jumps established in Royer (Stoch. Process. Appl 116: 1358-1376, 2006) and Yin and Mao (J. Math. Anal. Appl 346: 345-358, 2008) hold under more simplified conditions. Moreover, we prove existence and uniqueness allowing the coefficients in the linear growth- and monotonicity-condition for the generator to be random and time-dependent. In the <i>L</i> <sup>2</sup>-case with linear growth, this also generalizes the results of Kruse and Popier (Stochastics 88: 491-539, 2016). For the proof of the comparison result, we introduce an approximation technique: Given a BSDE driven by Brownian motion and Poisson random measure, we approximate it by BSDEs where the Poisson random measure admits only jumps of size larger than 1/<i>n</i>.</p>\",\"PeriodicalId\":42330,\"journal\":{\"name\":\"Probability Uncertainty and Quantitative Risk\",\"volume\":\"3 1\",\"pages\":\"9\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s41546-018-0034-y\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Uncertainty and Quantitative Risk\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s41546-018-0034-y\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/12/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Uncertainty and Quantitative Risk","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s41546-018-0034-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/12/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 9

摘要

我们展示了在Royer (Stoch)中建立跳跃的后向SDE的比较结果。的过程。中国科学:地球科学,2006)。分析的苹果346:345-358,2008)持有更简化的条件。此外,我们还证明了允许发生器线性增长和单调条件下的系数随机且随时间变化的存在唯一性。在线性增长的l2情况下,这也概括了Kruse和Popier的结果(《随机统计学》88:491-539,2016)。为了证明比较结果,我们引入了一种近似技术:给定一个由布朗运动和泊松随机测度驱动的BSDE,我们用泊松随机测度只允许大于1/n的跳变的BSDE来近似它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence, uniqueness and comparison results for BSDEs with Lévy jumps in an extended monotonic generator setting.

We show that the comparison results for a backward SDE with jumps established in Royer (Stoch. Process. Appl 116: 1358-1376, 2006) and Yin and Mao (J. Math. Anal. Appl 346: 345-358, 2008) hold under more simplified conditions. Moreover, we prove existence and uniqueness allowing the coefficients in the linear growth- and monotonicity-condition for the generator to be random and time-dependent. In the L 2-case with linear growth, this also generalizes the results of Kruse and Popier (Stochastics 88: 491-539, 2016). For the proof of the comparison result, we introduce an approximation technique: Given a BSDE driven by Brownian motion and Poisson random measure, we approximate it by BSDEs where the Poisson random measure admits only jumps of size larger than 1/n.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
13.30%
发文量
29
审稿时长
12 weeks
期刊介绍: Probability, Uncertainty and Quantitative Risk (PUQR) is a quarterly academic journal under the supervision of the Ministry of Education of the People's Republic of China and hosted by Shandong University, which is open to the public at home and abroad (ISSN 2095-9672; CN 37-1505/O1). Probability, Uncertainty and Quantitative Risk (PUQR) mainly reports on the major developments in modern probability theory, covering stochastic analysis and statistics, stochastic processes, dynamical analysis and control theory, and their applications in the fields of finance, economics, biology, and computer science. The journal is currently indexed in ESCI, Scopus, Mathematical Reviews, zbMATH Open and other databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信