下载PDF
{"title":"平行钳和多嘌呤发夹(PPRH)用于基因沉默和三重亲和力捕获:设计,合成和使用。","authors":"Anna Aviñó, Ramon Eritja, Carlos J Ciudad, Verónica Noé","doi":"10.1002/cpnc.78","DOIUrl":null,"url":null,"abstract":"<p><p>Nucleic acid triplexes are formed when a DNA or RNA oligonucleotide binds to a polypurine-polypyrimidine-rich sequence. Triplexes have wide therapeutic applications such as gene silencing or site-specific mutagenesis. In addition, protocols based on triplex-affinity capture have been used for detecting nucleic acids in biosensing platforms. In this article, the design, synthesis, and use of parallel clamps and polypurine-reversed hairpins (PPRH) to bind to target polypyrimidine targets are described. The combination of the polypurine Watson-Crick strand with the triplex-forming strand in a single molecule produces highly stable triplexes allowing targeting of single- and double-stranded nucleic acid sequences. On the other hand, PPRHs are easily prepared and work at nanomolar range, like siRNAs, and at a lower concentration than that needed for antisense ODNs or TFOs. However, the stability of PPRHs is higher than that of siRNAs. In addition, PPRHs circumvent off-target effects and are non-immunogenic. © 2019 by John Wiley & Sons, Inc.</p>","PeriodicalId":10966,"journal":{"name":"Current Protocols in Nucleic Acid Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpnc.78","citationCount":"7","resultStr":"{\"title\":\"Parallel Clamps and Polypurine Hairpins (PPRH) for Gene Silencing and Triplex-Affinity Capture: Design, Synthesis, and Use.\",\"authors\":\"Anna Aviñó, Ramon Eritja, Carlos J Ciudad, Verónica Noé\",\"doi\":\"10.1002/cpnc.78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nucleic acid triplexes are formed when a DNA or RNA oligonucleotide binds to a polypurine-polypyrimidine-rich sequence. Triplexes have wide therapeutic applications such as gene silencing or site-specific mutagenesis. In addition, protocols based on triplex-affinity capture have been used for detecting nucleic acids in biosensing platforms. In this article, the design, synthesis, and use of parallel clamps and polypurine-reversed hairpins (PPRH) to bind to target polypyrimidine targets are described. The combination of the polypurine Watson-Crick strand with the triplex-forming strand in a single molecule produces highly stable triplexes allowing targeting of single- and double-stranded nucleic acid sequences. On the other hand, PPRHs are easily prepared and work at nanomolar range, like siRNAs, and at a lower concentration than that needed for antisense ODNs or TFOs. However, the stability of PPRHs is higher than that of siRNAs. In addition, PPRHs circumvent off-target effects and are non-immunogenic. © 2019 by John Wiley & Sons, Inc.</p>\",\"PeriodicalId\":10966,\"journal\":{\"name\":\"Current Protocols in Nucleic Acid Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cpnc.78\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Protocols in Nucleic Acid Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/cpnc.78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/3/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Nucleic Acid Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cpnc.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/3/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 7
引用
批量引用