{"title":"应用优化技术开发奈及利亚精油的纳米载体:表征与评估。","authors":"Aya M Dawaba, Hamdy M Dawaba","doi":"10.2174/1872211313666190516095309","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chitosan, a naturally occurring polymer, has interesting applications in the field of drug delivery due to its plentiful advantages as biodegradability, biocompatibility and nontoxic nature. Nigella sativa essential oil is unstable, volatile, and insoluble in water and these problems confine its usage in developing new medicines.</p><p><strong>Objective: </strong>This study focuses on developing a chitosan-based nanocarrier for the encapsulation of Nigella Sativa essential oil. By using Quality by design outline, the quality target product outline, critical quality attributes and critical material attributes were defined by knowledge and risk-based procedures.</p><p><strong>Methods: </strong>According to defined critical material attributes, Optimization software (Statgraphics XVII) was used to study the effect of the processing parameters. The processing parameters identified and fixed first with a \"One factor at a time\" approach. Various physicochemical characterization techniques were performed.</p><p><strong>Results: </strong>As a result, the ratio of chitosan to benzoic acid (2:1) along with the stirring rate (4000 rpm) produced minimum-sized particles (341 nm) with good stability. The anti-bacterial activity study using Staph. Aureus strain proved that the optimized nanoparticles were more efficacious than the pure oil based on the diameter of inhibition zone obtained (diameter =5.5 cm for optimized formula vs diameter = 3.6 cm for pure oil). Furthermore, MTT (methyl thiazolyl-diphenyl-tetrazolium bromide) assay was performed to compare the in vitro cytotoxicity using two different cell lines (i.e. HCT 116 for colorectal carcinoma and PC3 for prostatic cancer). It was found that in both cell lines, the optimized nanoparticles had noteworthy antiproliferative properties illustrated by determining the concentration at which 50% of growth is inhibited (IC50). The optimized nanoparticles showed lower IC50 (17.95 ±0.82 and 4.02 ±0.12μg/ml) than the bare oil IC50 (43.56 ±1.95 and 29.72 ±1.41μg/ml).</p>","PeriodicalId":40024,"journal":{"name":"Recent Patents on Drug Delivery and Formulation","volume":"13 3","pages":"228-240"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/88/89/RPDDF-13-228.PMC7011686.pdf","citationCount":"0","resultStr":"{\"title\":\"Application of Optimization Technique to Develop Nano-Based Carrier of Nigella Sativa Essential Oil: Characterization and Assessment.\",\"authors\":\"Aya M Dawaba, Hamdy M Dawaba\",\"doi\":\"10.2174/1872211313666190516095309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Chitosan, a naturally occurring polymer, has interesting applications in the field of drug delivery due to its plentiful advantages as biodegradability, biocompatibility and nontoxic nature. Nigella sativa essential oil is unstable, volatile, and insoluble in water and these problems confine its usage in developing new medicines.</p><p><strong>Objective: </strong>This study focuses on developing a chitosan-based nanocarrier for the encapsulation of Nigella Sativa essential oil. By using Quality by design outline, the quality target product outline, critical quality attributes and critical material attributes were defined by knowledge and risk-based procedures.</p><p><strong>Methods: </strong>According to defined critical material attributes, Optimization software (Statgraphics XVII) was used to study the effect of the processing parameters. The processing parameters identified and fixed first with a \\\"One factor at a time\\\" approach. Various physicochemical characterization techniques were performed.</p><p><strong>Results: </strong>As a result, the ratio of chitosan to benzoic acid (2:1) along with the stirring rate (4000 rpm) produced minimum-sized particles (341 nm) with good stability. The anti-bacterial activity study using Staph. Aureus strain proved that the optimized nanoparticles were more efficacious than the pure oil based on the diameter of inhibition zone obtained (diameter =5.5 cm for optimized formula vs diameter = 3.6 cm for pure oil). Furthermore, MTT (methyl thiazolyl-diphenyl-tetrazolium bromide) assay was performed to compare the in vitro cytotoxicity using two different cell lines (i.e. HCT 116 for colorectal carcinoma and PC3 for prostatic cancer). It was found that in both cell lines, the optimized nanoparticles had noteworthy antiproliferative properties illustrated by determining the concentration at which 50% of growth is inhibited (IC50). The optimized nanoparticles showed lower IC50 (17.95 ±0.82 and 4.02 ±0.12μg/ml) than the bare oil IC50 (43.56 ±1.95 and 29.72 ±1.41μg/ml).</p>\",\"PeriodicalId\":40024,\"journal\":{\"name\":\"Recent Patents on Drug Delivery and Formulation\",\"volume\":\"13 3\",\"pages\":\"228-240\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/88/89/RPDDF-13-228.PMC7011686.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Patents on Drug Delivery and Formulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1872211313666190516095309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Patents on Drug Delivery and Formulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1872211313666190516095309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Application of Optimization Technique to Develop Nano-Based Carrier of Nigella Sativa Essential Oil: Characterization and Assessment.
Background: Chitosan, a naturally occurring polymer, has interesting applications in the field of drug delivery due to its plentiful advantages as biodegradability, biocompatibility and nontoxic nature. Nigella sativa essential oil is unstable, volatile, and insoluble in water and these problems confine its usage in developing new medicines.
Objective: This study focuses on developing a chitosan-based nanocarrier for the encapsulation of Nigella Sativa essential oil. By using Quality by design outline, the quality target product outline, critical quality attributes and critical material attributes were defined by knowledge and risk-based procedures.
Methods: According to defined critical material attributes, Optimization software (Statgraphics XVII) was used to study the effect of the processing parameters. The processing parameters identified and fixed first with a "One factor at a time" approach. Various physicochemical characterization techniques were performed.
Results: As a result, the ratio of chitosan to benzoic acid (2:1) along with the stirring rate (4000 rpm) produced minimum-sized particles (341 nm) with good stability. The anti-bacterial activity study using Staph. Aureus strain proved that the optimized nanoparticles were more efficacious than the pure oil based on the diameter of inhibition zone obtained (diameter =5.5 cm for optimized formula vs diameter = 3.6 cm for pure oil). Furthermore, MTT (methyl thiazolyl-diphenyl-tetrazolium bromide) assay was performed to compare the in vitro cytotoxicity using two different cell lines (i.e. HCT 116 for colorectal carcinoma and PC3 for prostatic cancer). It was found that in both cell lines, the optimized nanoparticles had noteworthy antiproliferative properties illustrated by determining the concentration at which 50% of growth is inhibited (IC50). The optimized nanoparticles showed lower IC50 (17.95 ±0.82 and 4.02 ±0.12μg/ml) than the bare oil IC50 (43.56 ±1.95 and 29.72 ±1.41μg/ml).
期刊介绍:
Recent Patents on Drug Delivery & Formulation publishes review and research articles, drug clinical trial studies and guest edited thematic issues on recent patents on drug delivery and formulation. A selection of important and recent patents on drug delivery and formulation is also included in the journal. The journal is essential reading for all researchers involved in the fields of drug delivery and formulation. The journal also covers recent research (where patents have been registered) in fast emerging therapeutic areas/targets & therapeutic agents related to drug delivery and formulations.