随机簇大小二项序列分析的联合泊松状态空间建模方法。

IF 1.2 4区 数学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Guohua Yan, Renjun Ma, M Tariqul Hasan
{"title":"随机簇大小二项序列分析的联合泊松状态空间建模方法。","authors":"Guohua Yan,&nbsp;Renjun Ma,&nbsp;M Tariqul Hasan","doi":"10.1515/ijb-2018-0090","DOIUrl":null,"url":null,"abstract":"<p><p>Serially correlation binomial data with random cluster sizes occur frequently in environmental and health studies. Such data series have traditionally been analyzed using binomial state-space or hidden Markov models without appropriately accounting for the randomness in the cluster sizes. To characterize correlation and extra-variation arising from the random cluster sizes properly, we introduce a joint Poisson state-space modelling approach to analysis of binomial series with random cluster sizes. This approach enables us to model the marginal counts and binomial proportions simultaneously. An optimal estimation of our model has been developed using the orthodox best linear unbiased predictors. This estimation method is computationally efficient and robust since it depends only on the first- and second- moment assumptions of unobserved random effects. Our proposed approach is illustrated with analysis of birth delivery data.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"15 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2018-0090","citationCount":"3","resultStr":"{\"title\":\"A Joint Poisson State-Space Modelling Approach to Analysis of Binomial Series with Random Cluster Sizes.\",\"authors\":\"Guohua Yan,&nbsp;Renjun Ma,&nbsp;M Tariqul Hasan\",\"doi\":\"10.1515/ijb-2018-0090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Serially correlation binomial data with random cluster sizes occur frequently in environmental and health studies. Such data series have traditionally been analyzed using binomial state-space or hidden Markov models without appropriately accounting for the randomness in the cluster sizes. To characterize correlation and extra-variation arising from the random cluster sizes properly, we introduce a joint Poisson state-space modelling approach to analysis of binomial series with random cluster sizes. This approach enables us to model the marginal counts and binomial proportions simultaneously. An optimal estimation of our model has been developed using the orthodox best linear unbiased predictors. This estimation method is computationally efficient and robust since it depends only on the first- and second- moment assumptions of unobserved random effects. Our proposed approach is illustrated with analysis of birth delivery data.</p>\",\"PeriodicalId\":49058,\"journal\":{\"name\":\"International Journal of Biostatistics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/ijb-2018-0090\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2018-0090\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2018-0090","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

具有随机簇大小的序列相关二项数据在环境和健康研究中经常出现。这类数据序列传统上使用二项式状态空间或隐马尔可夫模型进行分析,而没有适当考虑聚类大小的随机性。为了恰当地描述随机簇大小引起的相关性和额外变异,我们引入了一种联合泊松状态空间建模方法来分析随机簇大小的二项序列。这种方法使我们能够同时模拟边际计数和二项比例。使用正统的最佳线性无偏预测器对我们的模型进行了最优估计。由于该估计方法仅依赖于未观察到的随机效应的第一和第二矩假设,因此计算效率高,鲁棒性好。我们提出的方法是通过分娩数据的分析来说明的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Joint Poisson State-Space Modelling Approach to Analysis of Binomial Series with Random Cluster Sizes.

Serially correlation binomial data with random cluster sizes occur frequently in environmental and health studies. Such data series have traditionally been analyzed using binomial state-space or hidden Markov models without appropriately accounting for the randomness in the cluster sizes. To characterize correlation and extra-variation arising from the random cluster sizes properly, we introduce a joint Poisson state-space modelling approach to analysis of binomial series with random cluster sizes. This approach enables us to model the marginal counts and binomial proportions simultaneously. An optimal estimation of our model has been developed using the orthodox best linear unbiased predictors. This estimation method is computationally efficient and robust since it depends only on the first- and second- moment assumptions of unobserved random effects. Our proposed approach is illustrated with analysis of birth delivery data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Biostatistics
International Journal of Biostatistics MATHEMATICAL & COMPUTATIONAL BIOLOGY-STATISTICS & PROBABILITY
CiteScore
2.10
自引率
8.30%
发文量
28
审稿时长
>12 weeks
期刊介绍: The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信