{"title":"随机簇大小二项序列分析的联合泊松状态空间建模方法。","authors":"Guohua Yan, Renjun Ma, M Tariqul Hasan","doi":"10.1515/ijb-2018-0090","DOIUrl":null,"url":null,"abstract":"<p><p>Serially correlation binomial data with random cluster sizes occur frequently in environmental and health studies. Such data series have traditionally been analyzed using binomial state-space or hidden Markov models without appropriately accounting for the randomness in the cluster sizes. To characterize correlation and extra-variation arising from the random cluster sizes properly, we introduce a joint Poisson state-space modelling approach to analysis of binomial series with random cluster sizes. This approach enables us to model the marginal counts and binomial proportions simultaneously. An optimal estimation of our model has been developed using the orthodox best linear unbiased predictors. This estimation method is computationally efficient and robust since it depends only on the first- and second- moment assumptions of unobserved random effects. Our proposed approach is illustrated with analysis of birth delivery data.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"15 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2018-0090","citationCount":"3","resultStr":"{\"title\":\"A Joint Poisson State-Space Modelling Approach to Analysis of Binomial Series with Random Cluster Sizes.\",\"authors\":\"Guohua Yan, Renjun Ma, M Tariqul Hasan\",\"doi\":\"10.1515/ijb-2018-0090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Serially correlation binomial data with random cluster sizes occur frequently in environmental and health studies. Such data series have traditionally been analyzed using binomial state-space or hidden Markov models without appropriately accounting for the randomness in the cluster sizes. To characterize correlation and extra-variation arising from the random cluster sizes properly, we introduce a joint Poisson state-space modelling approach to analysis of binomial series with random cluster sizes. This approach enables us to model the marginal counts and binomial proportions simultaneously. An optimal estimation of our model has been developed using the orthodox best linear unbiased predictors. This estimation method is computationally efficient and robust since it depends only on the first- and second- moment assumptions of unobserved random effects. Our proposed approach is illustrated with analysis of birth delivery data.</p>\",\"PeriodicalId\":49058,\"journal\":{\"name\":\"International Journal of Biostatistics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/ijb-2018-0090\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2018-0090\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2018-0090","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
A Joint Poisson State-Space Modelling Approach to Analysis of Binomial Series with Random Cluster Sizes.
Serially correlation binomial data with random cluster sizes occur frequently in environmental and health studies. Such data series have traditionally been analyzed using binomial state-space or hidden Markov models without appropriately accounting for the randomness in the cluster sizes. To characterize correlation and extra-variation arising from the random cluster sizes properly, we introduce a joint Poisson state-space modelling approach to analysis of binomial series with random cluster sizes. This approach enables us to model the marginal counts and binomial proportions simultaneously. An optimal estimation of our model has been developed using the orthodox best linear unbiased predictors. This estimation method is computationally efficient and robust since it depends only on the first- and second- moment assumptions of unobserved random effects. Our proposed approach is illustrated with analysis of birth delivery data.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.