{"title":"癌症研究中质谱蛋白质组学数据中生物标志物鉴定的可重复性。","authors":"Yulan Liang, Adam Kelemen, Arpad Kelemen","doi":"10.1515/sagmb-2018-0039","DOIUrl":null,"url":null,"abstract":"<p><p>Reproducibility of disease signatures and clinical biomarkers in multi-omics disease analysis has been a key challenge due to a multitude of factors. The heterogeneity of the limited sample, various biological factors such as environmental confounders, and the inherent experimental and technical noises, compounded with the inadequacy of statistical tools, can lead to the misinterpretation of results, and subsequently very different biology. In this paper, we investigate the biomarker reproducibility issues, potentially caused by differences of statistical methods with varied distribution assumptions or marker selection criteria using Mass Spectrometry proteomic ovarian tumor data. We examine the relationship between effect sizes, p values, Cauchy p values, False Discovery Rate p values, and the rank fractions of identified proteins out of thousands in the limited heterogeneous sample. We compared the markers identified from statistical single features selection approaches with machine learning wrapper methods. The results reveal marked differences when selecting the protein markers from varied methods with potential selection biases and false discoveries, which may be due to the small effects, different distribution assumptions, and p value type criteria versus prediction accuracies. The alternative solutions and other related issues are discussed in supporting the reproducibility of findings for clinical actionable outcomes.</p>","PeriodicalId":49477,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"18 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2018-0039","citationCount":"3","resultStr":"{\"title\":\"Reproducibility of biomarker identifications from mass spectrometry proteomic data in cancer studies.\",\"authors\":\"Yulan Liang, Adam Kelemen, Arpad Kelemen\",\"doi\":\"10.1515/sagmb-2018-0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reproducibility of disease signatures and clinical biomarkers in multi-omics disease analysis has been a key challenge due to a multitude of factors. The heterogeneity of the limited sample, various biological factors such as environmental confounders, and the inherent experimental and technical noises, compounded with the inadequacy of statistical tools, can lead to the misinterpretation of results, and subsequently very different biology. In this paper, we investigate the biomarker reproducibility issues, potentially caused by differences of statistical methods with varied distribution assumptions or marker selection criteria using Mass Spectrometry proteomic ovarian tumor data. We examine the relationship between effect sizes, p values, Cauchy p values, False Discovery Rate p values, and the rank fractions of identified proteins out of thousands in the limited heterogeneous sample. We compared the markers identified from statistical single features selection approaches with machine learning wrapper methods. The results reveal marked differences when selecting the protein markers from varied methods with potential selection biases and false discoveries, which may be due to the small effects, different distribution assumptions, and p value type criteria versus prediction accuracies. The alternative solutions and other related issues are discussed in supporting the reproducibility of findings for clinical actionable outcomes.</p>\",\"PeriodicalId\":49477,\"journal\":{\"name\":\"Statistical Applications in Genetics and Molecular Biology\",\"volume\":\"18 3\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/sagmb-2018-0039\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Applications in Genetics and Molecular Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/sagmb-2018-0039\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2018-0039","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Reproducibility of biomarker identifications from mass spectrometry proteomic data in cancer studies.
Reproducibility of disease signatures and clinical biomarkers in multi-omics disease analysis has been a key challenge due to a multitude of factors. The heterogeneity of the limited sample, various biological factors such as environmental confounders, and the inherent experimental and technical noises, compounded with the inadequacy of statistical tools, can lead to the misinterpretation of results, and subsequently very different biology. In this paper, we investigate the biomarker reproducibility issues, potentially caused by differences of statistical methods with varied distribution assumptions or marker selection criteria using Mass Spectrometry proteomic ovarian tumor data. We examine the relationship between effect sizes, p values, Cauchy p values, False Discovery Rate p values, and the rank fractions of identified proteins out of thousands in the limited heterogeneous sample. We compared the markers identified from statistical single features selection approaches with machine learning wrapper methods. The results reveal marked differences when selecting the protein markers from varied methods with potential selection biases and false discoveries, which may be due to the small effects, different distribution assumptions, and p value type criteria versus prediction accuracies. The alternative solutions and other related issues are discussed in supporting the reproducibility of findings for clinical actionable outcomes.
期刊介绍:
Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.