肠胃病学遇上机器学习:现状与未来。

Q1 Biochemistry, Genetics and Molecular Biology
Advances in Bioinformatics Pub Date : 2019-04-02 eCollection Date: 2019-01-01 DOI:10.1155/2019/1870975
Amina Adadi, Safae Adadi, Mohammed Berrada
{"title":"肠胃病学遇上机器学习:现状与未来。","authors":"Amina Adadi, Safae Adadi, Mohammed Berrada","doi":"10.1155/2019/1870975","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning has undergone a transition phase from being a pure statistical tool to being one of the main drivers of modern medicine. In gastroenterology, this technology is motivating a growing number of studies that rely on these innovative methods to deal with critical issues related to this practice. Hence, in the light of the burgeoning research on the use of machine learning in gastroenterology, a systematic review of the literature is timely. In this work, we present the results gleaned through a systematic review of prominent gastroenterology literature using machine learning techniques. Based on the analysis of 88 journal articles, we delimit the scope of application, we discuss current limitations including bias, lack of transparency, accountability, and data availability, and we put forward future avenues.</p>","PeriodicalId":39059,"journal":{"name":"Advances in Bioinformatics","volume":"2019 ","pages":"1870975"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6466966/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gastroenterology Meets Machine Learning: Status Quo and Quo Vadis.\",\"authors\":\"Amina Adadi, Safae Adadi, Mohammed Berrada\",\"doi\":\"10.1155/2019/1870975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Machine learning has undergone a transition phase from being a pure statistical tool to being one of the main drivers of modern medicine. In gastroenterology, this technology is motivating a growing number of studies that rely on these innovative methods to deal with critical issues related to this practice. Hence, in the light of the burgeoning research on the use of machine learning in gastroenterology, a systematic review of the literature is timely. In this work, we present the results gleaned through a systematic review of prominent gastroenterology literature using machine learning techniques. Based on the analysis of 88 journal articles, we delimit the scope of application, we discuss current limitations including bias, lack of transparency, accountability, and data availability, and we put forward future avenues.</p>\",\"PeriodicalId\":39059,\"journal\":{\"name\":\"Advances in Bioinformatics\",\"volume\":\"2019 \",\"pages\":\"1870975\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6466966/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2019/1870975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/1870975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

机器学习已从纯粹的统计工具过渡到现代医学的主要驱动力之一。在胃肠病学领域,这项技术正促使越来越多的研究依靠这些创新方法来处理与胃肠病学相关的关键问题。因此,鉴于机器学习在胃肠病学中的应用研究方兴未艾,对相关文献进行系统综述正当其时。在这项工作中,我们介绍了利用机器学习技术对著名消化内科文献进行系统综述的结果。基于对 88 篇期刊论文的分析,我们划定了应用范围,讨论了当前的局限性,包括偏见、缺乏透明度、问责制和数据可用性,并提出了未来的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Gastroenterology Meets Machine Learning: Status Quo and Quo Vadis.

Gastroenterology Meets Machine Learning: Status Quo and Quo Vadis.

Gastroenterology Meets Machine Learning: Status Quo and Quo Vadis.

Gastroenterology Meets Machine Learning: Status Quo and Quo Vadis.

Machine learning has undergone a transition phase from being a pure statistical tool to being one of the main drivers of modern medicine. In gastroenterology, this technology is motivating a growing number of studies that rely on these innovative methods to deal with critical issues related to this practice. Hence, in the light of the burgeoning research on the use of machine learning in gastroenterology, a systematic review of the literature is timely. In this work, we present the results gleaned through a systematic review of prominent gastroenterology literature using machine learning techniques. Based on the analysis of 88 journal articles, we delimit the scope of application, we discuss current limitations including bias, lack of transparency, accountability, and data availability, and we put forward future avenues.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Bioinformatics
Advances in Bioinformatics Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信