{"title":"crispr介导系统在杜氏肌营养不良研究中的发展。","authors":"Aojie Cai, Xiangdong Kong","doi":"10.1089/hgtb.2018.187","DOIUrl":null,"url":null,"abstract":"<p><p>Duchenne muscular dystrophy (DMD) is a severe type of X-linked recessive degenerative muscle disease caused by mutations in the dystrophin (<i>DMD</i>) gene on the X chromosome. The <i>DMD</i> gene is complex, consisting of 79 exons, and mutations cause changes in the <i>DMD</i> mRNA so that the reading frame is altered, and the muscle-specific isoform of the dystrophin protein is either absent or truncated with variable residual function. The emerging CRISPR-Cas9-mediated genome editing technique is being developed as a potential therapeutic approach to treat DMD because it can permanently replace the mutated dystrophin gene with the normal gene. Prenatal DNA testing can inform whether the female fetus is a carrier of DMD, and the male fetus has inherited a mutation from his mother (50% chance of both). This article summarizes the present status of current and future treatments for DMD.</p>","PeriodicalId":13126,"journal":{"name":"Human Gene Therapy Methods","volume":"30 3","pages":"71-80"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/hgtb.2018.187","citationCount":"8","resultStr":"{\"title\":\"Development of CRISPR-Mediated Systems in the Study of Duchenne Muscular Dystrophy.\",\"authors\":\"Aojie Cai, Xiangdong Kong\",\"doi\":\"10.1089/hgtb.2018.187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Duchenne muscular dystrophy (DMD) is a severe type of X-linked recessive degenerative muscle disease caused by mutations in the dystrophin (<i>DMD</i>) gene on the X chromosome. The <i>DMD</i> gene is complex, consisting of 79 exons, and mutations cause changes in the <i>DMD</i> mRNA so that the reading frame is altered, and the muscle-specific isoform of the dystrophin protein is either absent or truncated with variable residual function. The emerging CRISPR-Cas9-mediated genome editing technique is being developed as a potential therapeutic approach to treat DMD because it can permanently replace the mutated dystrophin gene with the normal gene. Prenatal DNA testing can inform whether the female fetus is a carrier of DMD, and the male fetus has inherited a mutation from his mother (50% chance of both). This article summarizes the present status of current and future treatments for DMD.</p>\",\"PeriodicalId\":13126,\"journal\":{\"name\":\"Human Gene Therapy Methods\",\"volume\":\"30 3\",\"pages\":\"71-80\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/hgtb.2018.187\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Gene Therapy Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/hgtb.2018.187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/5/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Gene Therapy Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/hgtb.2018.187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/5/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
Development of CRISPR-Mediated Systems in the Study of Duchenne Muscular Dystrophy.
Duchenne muscular dystrophy (DMD) is a severe type of X-linked recessive degenerative muscle disease caused by mutations in the dystrophin (DMD) gene on the X chromosome. The DMD gene is complex, consisting of 79 exons, and mutations cause changes in the DMD mRNA so that the reading frame is altered, and the muscle-specific isoform of the dystrophin protein is either absent or truncated with variable residual function. The emerging CRISPR-Cas9-mediated genome editing technique is being developed as a potential therapeutic approach to treat DMD because it can permanently replace the mutated dystrophin gene with the normal gene. Prenatal DNA testing can inform whether the female fetus is a carrier of DMD, and the male fetus has inherited a mutation from his mother (50% chance of both). This article summarizes the present status of current and future treatments for DMD.
期刊介绍:
Human Gene Therapy is the premier, multidisciplinary journal covering all aspects of gene therapy. The Journal publishes in-depth coverage of DNA, RNA, and cell therapies by delivering the latest breakthroughs in research and technologies. Human Gene Therapy provides a central forum for scientific and clinical information, including ethical, legal, regulatory, social, and commercial issues, which enables the advancement and progress of therapeutic procedures leading to improved patient outcomes, and ultimately, to curing diseases.
The Journal is divided into three parts. Human Gene Therapy, the flagship, is published 12 times per year. HGT Methods, a bimonthly journal, focuses on the applications of gene therapy to product testing and development. HGT Clinical Development, a quarterly journal, serves as a venue for publishing data relevant to the regulatory review and commercial development of cell and gene therapy products.