{"title":"利用各组采食量记录进行饲料效率选择。","authors":"Miriam Piles, Juan Pablo Sánchez","doi":"10.1111/jbg.12395","DOIUrl":null,"url":null,"abstract":"<p><p>Models for genetic evaluation of feed efficiency (FE) for animals housed in groups when they are either fed ad libitum (F) or on restricted (R) feeding were implemented. Definitions of FE on F included group records of feed intake ( <math> <msub><mover><mi>FI</mi> <mo>¯</mo></mover> <mi>F</mi></msub> </math> ) and individual records of growth rate (G<sub>F</sub> ) and metabolic weight (M<sub>F</sub> ). Growth rate (G<sub>R</sub> ) as FE measurement on R was used. Data corresponded to 5,336 kits from a rabbit sire line, from 1,255 litters in 14 batches and 667 cages. A five-trait mixed model (also with metabolic weight on R, M<sub>R</sub> ) was implemented including, for each trait, the systematic effects of batch, body weight at weaning, parity order and litter size; and the random effects of litter, additive genetic and individual. A Bayesian analysis was performed. Conditional traits such as <math> <mrow> <msub><mover><mi>FI</mi> <mo>¯</mo></mover> <mi>F</mi></msub> <mrow><mo>|</mo></mrow> <msub><mi>M</mi> <mi>F</mi></msub> <mo>,</mo> <msub><mi>G</mi> <mi>F</mi></msub> </mrow> </math> and <math> <mrow><msub><mi>G</mi> <mi>F</mi></msub> <mrow><mo>|</mo></mrow> <msub><mi>M</mi> <mi>F</mi></msub> <mo>,</mo> <msub><mover><mi>FI</mi> <mo>¯</mo></mover> <mi>F</mi></msub> </mrow> </math> were obtained from elements of additive genetics ( <math> <msub> <mfenced> <msub><mover><mi>FI</mi> <mo>¯</mo></mover> <mi>F</mi></msub> <mrow><mo>|</mo></mrow> <msub><mi>M</mi> <mi>F</mi></msub> <mo>,</mo> <msub><mi>G</mi> <mi>F</mi></msub> </mfenced> <mi>g</mi></msub> </math> and <math> <msub> <mfenced><msub><mi>G</mi> <mi>F</mi></msub> <mrow><mo>|</mo></mrow> <msub><mi>M</mi> <mi>F</mi></msub> <mo>,</mo> <msub><mover><mi>FI</mi> <mo>¯</mo></mover> <mi>F</mi></msub> </mfenced> <mi>g</mi></msub> </math> ) or phenotypic ( <math> <msub> <mfenced> <msub><mover><mi>FI</mi> <mo>¯</mo></mover> <mi>F</mi></msub> <mrow><mo>|</mo></mrow> <msub><mi>M</mi> <mi>F</mi></msub> <mo>,</mo> <msub><mi>G</mi> <mi>F</mi></msub> </mfenced> <mi>p</mi></msub> </math> and <math> <msub> <mfenced><msub><mi>G</mi> <mi>F</mi></msub> <mrow><mo>|</mo></mrow> <msub><mi>M</mi> <mi>F</mi></msub> <mo>,</mo> <msub><mover><mi>FI</mi> <mo>¯</mo></mover> <mi>F</mi></msub> </mfenced> <mi>p</mi></msub> </math> ) (co)variance matrices. In the first case, heritabilities were low (0.07 and 0.06 for <math> <msub> <mfenced> <msub><mover><mi>FI</mi> <mo>¯</mo></mover> <mi>F</mi></msub> <mrow><mo>|</mo></mrow> <msub><mi>M</mi> <mi>F</mi></msub> <mo>,</mo> <msub><mi>G</mi> <mi>F</mi></msub> </mfenced> <mi>g</mi></msub> </math> and <math> <msub> <mfenced><msub><mi>G</mi> <mi>F</mi></msub> <mrow><mo>|</mo></mrow> <msub><mi>M</mi> <mi>F</mi></msub> <mo>,</mo> <msub><mover><mi>FI</mi> <mo>¯</mo></mover> <mi>F</mi></msub> </mfenced> <mi>g</mi></msub> </math> , respectively) but null genetic correlation between the conditional and conditioning traits is guaranteed. In the second case, heritabilities were higher (0.22 and 0.16 for <math> <msub> <mfenced> <msub><mover><mi>FI</mi> <mo>¯</mo></mover> <mi>F</mi></msub> <mrow><mo>|</mo></mrow> <msub><mi>M</mi> <mi>F</mi></msub> <mo>,</mo> <msub><mi>G</mi> <mi>F</mi></msub> </mfenced> <mi>p</mi></msub> </math> and <math> <msub> <mfenced><msub><mi>G</mi> <mi>F</mi></msub> <mrow><mo>|</mo></mrow> <msub><mi>M</mi> <mi>F</mi></msub> <mo>,</mo> <msub><mover><mi>FI</mi> <mo>¯</mo></mover> <mi>F</mi></msub> </mfenced> <mi>p</mi></msub> </math> , respectively) but the genetic correlation between <math> <msub> <mfenced> <msub><mover><mi>FI</mi> <mo>¯</mo></mover> <mi>F</mi></msub> <mrow><mo>|</mo></mrow> <msub><mi>M</mi> <mi>F</mi></msub> <mo>,</mo> <msub><mi>G</mi> <mi>F</mi></msub> </mfenced> <mi>p</mi></msub> </math> and <math><msub><mi>G</mi> <mi>F</mi></msub> </math> was moderate (0.58). Heritability of G<sub>R</sub> was low (0.08). This trait was negatively correlated with <math> <msub> <mfenced><msub><mi>G</mi> <mi>F</mi></msub> <mrow><mo>|</mo></mrow> <msub><mi>M</mi> <mi>F</mi></msub> <mo>,</mo> <msub><mover><mi>FI</mi> <mo>¯</mo></mover> <mi>F</mi></msub> </mfenced> <mi>p</mi></msub> </math> and <math> <msub> <mfenced><msub><mi>G</mi> <mi>F</mi></msub> <mrow><mo>|</mo></mrow> <msub><mi>M</mi> <mi>F</mi></msub> <mo>,</mo> <msub><mover><mi>FI</mi> <mo>¯</mo></mover> <mi>F</mi></msub> </mfenced> <mi>g</mi></msub> </math> of animals on F, which indicate a different genetic background. The correlation between G<sub>R</sub> and G<sub>F</sub> was also low to moderate (0.48) and the additive variance of G<sub>F</sub> was almost four times that of G<sub>R</sub> , suggesting the presence of a substantial genotype by feeding regimen interaction.</p>","PeriodicalId":252687,"journal":{"name":"Journal of animal breeding and genetics = Zeitschrift für Tierzüchtung und Züchtungsbiologie","volume":" ","pages":"474-483"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/jbg.12395","citationCount":"17","resultStr":"{\"title\":\"Use of group records of feed intake to select for feed efficiency in rabbit.\",\"authors\":\"Miriam Piles, Juan Pablo Sánchez\",\"doi\":\"10.1111/jbg.12395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Models for genetic evaluation of feed efficiency (FE) for animals housed in groups when they are either fed ad libitum (F) or on restricted (R) feeding were implemented. Definitions of FE on F included group records of feed intake ( <math> <msub><mover><mi>FI</mi> <mo>¯</mo></mover> <mi>F</mi></msub> </math> ) and individual records of growth rate (G<sub>F</sub> ) and metabolic weight (M<sub>F</sub> ). Growth rate (G<sub>R</sub> ) as FE measurement on R was used. Data corresponded to 5,336 kits from a rabbit sire line, from 1,255 litters in 14 batches and 667 cages. A five-trait mixed model (also with metabolic weight on R, M<sub>R</sub> ) was implemented including, for each trait, the systematic effects of batch, body weight at weaning, parity order and litter size; and the random effects of litter, additive genetic and individual. A Bayesian analysis was performed. Conditional traits such as <math> <mrow> <msub><mover><mi>FI</mi> <mo>¯</mo></mover> <mi>F</mi></msub> <mrow><mo>|</mo></mrow> <msub><mi>M</mi> <mi>F</mi></msub> <mo>,</mo> <msub><mi>G</mi> <mi>F</mi></msub> </mrow> </math> and <math> <mrow><msub><mi>G</mi> <mi>F</mi></msub> <mrow><mo>|</mo></mrow> <msub><mi>M</mi> <mi>F</mi></msub> <mo>,</mo> <msub><mover><mi>FI</mi> <mo>¯</mo></mover> <mi>F</mi></msub> </mrow> </math> were obtained from elements of additive genetics ( <math> <msub> <mfenced> <msub><mover><mi>FI</mi> <mo>¯</mo></mover> <mi>F</mi></msub> <mrow><mo>|</mo></mrow> <msub><mi>M</mi> <mi>F</mi></msub> <mo>,</mo> <msub><mi>G</mi> <mi>F</mi></msub> </mfenced> <mi>g</mi></msub> </math> and <math> <msub> <mfenced><msub><mi>G</mi> <mi>F</mi></msub> <mrow><mo>|</mo></mrow> <msub><mi>M</mi> <mi>F</mi></msub> <mo>,</mo> <msub><mover><mi>FI</mi> <mo>¯</mo></mover> <mi>F</mi></msub> </mfenced> <mi>g</mi></msub> </math> ) or phenotypic ( <math> <msub> <mfenced> <msub><mover><mi>FI</mi> <mo>¯</mo></mover> <mi>F</mi></msub> <mrow><mo>|</mo></mrow> <msub><mi>M</mi> <mi>F</mi></msub> <mo>,</mo> <msub><mi>G</mi> <mi>F</mi></msub> </mfenced> <mi>p</mi></msub> </math> and <math> <msub> <mfenced><msub><mi>G</mi> <mi>F</mi></msub> <mrow><mo>|</mo></mrow> <msub><mi>M</mi> <mi>F</mi></msub> <mo>,</mo> <msub><mover><mi>FI</mi> <mo>¯</mo></mover> <mi>F</mi></msub> </mfenced> <mi>p</mi></msub> </math> ) (co)variance matrices. In the first case, heritabilities were low (0.07 and 0.06 for <math> <msub> <mfenced> <msub><mover><mi>FI</mi> <mo>¯</mo></mover> <mi>F</mi></msub> <mrow><mo>|</mo></mrow> <msub><mi>M</mi> <mi>F</mi></msub> <mo>,</mo> <msub><mi>G</mi> <mi>F</mi></msub> </mfenced> <mi>g</mi></msub> </math> and <math> <msub> <mfenced><msub><mi>G</mi> <mi>F</mi></msub> <mrow><mo>|</mo></mrow> <msub><mi>M</mi> <mi>F</mi></msub> <mo>,</mo> <msub><mover><mi>FI</mi> <mo>¯</mo></mover> <mi>F</mi></msub> </mfenced> <mi>g</mi></msub> </math> , respectively) but null genetic correlation between the conditional and conditioning traits is guaranteed. In the second case, heritabilities were higher (0.22 and 0.16 for <math> <msub> <mfenced> <msub><mover><mi>FI</mi> <mo>¯</mo></mover> <mi>F</mi></msub> <mrow><mo>|</mo></mrow> <msub><mi>M</mi> <mi>F</mi></msub> <mo>,</mo> <msub><mi>G</mi> <mi>F</mi></msub> </mfenced> <mi>p</mi></msub> </math> and <math> <msub> <mfenced><msub><mi>G</mi> <mi>F</mi></msub> <mrow><mo>|</mo></mrow> <msub><mi>M</mi> <mi>F</mi></msub> <mo>,</mo> <msub><mover><mi>FI</mi> <mo>¯</mo></mover> <mi>F</mi></msub> </mfenced> <mi>p</mi></msub> </math> , respectively) but the genetic correlation between <math> <msub> <mfenced> <msub><mover><mi>FI</mi> <mo>¯</mo></mover> <mi>F</mi></msub> <mrow><mo>|</mo></mrow> <msub><mi>M</mi> <mi>F</mi></msub> <mo>,</mo> <msub><mi>G</mi> <mi>F</mi></msub> </mfenced> <mi>p</mi></msub> </math> and <math><msub><mi>G</mi> <mi>F</mi></msub> </math> was moderate (0.58). Heritability of G<sub>R</sub> was low (0.08). This trait was negatively correlated with <math> <msub> <mfenced><msub><mi>G</mi> <mi>F</mi></msub> <mrow><mo>|</mo></mrow> <msub><mi>M</mi> <mi>F</mi></msub> <mo>,</mo> <msub><mover><mi>FI</mi> <mo>¯</mo></mover> <mi>F</mi></msub> </mfenced> <mi>p</mi></msub> </math> and <math> <msub> <mfenced><msub><mi>G</mi> <mi>F</mi></msub> <mrow><mo>|</mo></mrow> <msub><mi>M</mi> <mi>F</mi></msub> <mo>,</mo> <msub><mover><mi>FI</mi> <mo>¯</mo></mover> <mi>F</mi></msub> </mfenced> <mi>g</mi></msub> </math> of animals on F, which indicate a different genetic background. The correlation between G<sub>R</sub> and G<sub>F</sub> was also low to moderate (0.48) and the additive variance of G<sub>F</sub> was almost four times that of G<sub>R</sub> , suggesting the presence of a substantial genotype by feeding regimen interaction.</p>\",\"PeriodicalId\":252687,\"journal\":{\"name\":\"Journal of animal breeding and genetics = Zeitschrift für Tierzüchtung und Züchtungsbiologie\",\"volume\":\" \",\"pages\":\"474-483\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/jbg.12395\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of animal breeding and genetics = Zeitschrift für Tierzüchtung und Züchtungsbiologie\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/jbg.12395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/4/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of animal breeding and genetics = Zeitschrift für Tierzüchtung und Züchtungsbiologie","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/jbg.12395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/4/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
摘要
建立了自由采食和限制采食分组饲养动物饲料效率遗传评价模型。F上FE的定义包括各组采食量(FI¯F)记录和个体生长率(GF)和代谢重(MF)记录。采用生长率(GR)作为R的FE度量。数据对应于来自14批次和667个笼子的家兔父系的1,255窝的5,336个胎。采用五性状混合模型(同时考虑R、MR代谢体重),对每个性状考虑批次、断奶体重、胎次和窝产仔数的系统效应;以及凋落物、加性遗传和个体的随机效应。进行贝叶斯分析。FI¯F | M F、G F和G F | M F、FI¯F等条件性状是由加性遗传因子(FI¯F | M F、G F和G F | M F、FI¯F)或表型因子(FI¯F | M F、G F和G F | M F、FI¯F)方差矩阵获得的。在第一种情况下,遗传力较低(FI¯F | M F, G F和G F | M F, FI¯F分别为0.07和0.06),但条件性状和条件性状之间保证不存在遗传相关。在第二种情况下,遗传力较高(FI¯F | M F, G F p和G F | M F, FI¯F p分别为0.22和0.16),但FI¯F | M F, G F p和G F之间的遗传相关性中等(0.58)。GR遗传力较低(0.08)。该性状与F上动物的G F | M F, FI¯F和G F | M F, FI¯F呈负相关,说明遗传背景不同。GR与GF的相关性为低至中等(0.48),GF的加性方差几乎是GR的4倍,表明通过饲喂方式相互作用存在大量的基因型。
Use of group records of feed intake to select for feed efficiency in rabbit.
Models for genetic evaluation of feed efficiency (FE) for animals housed in groups when they are either fed ad libitum (F) or on restricted (R) feeding were implemented. Definitions of FE on F included group records of feed intake ( ) and individual records of growth rate (GF ) and metabolic weight (MF ). Growth rate (GR ) as FE measurement on R was used. Data corresponded to 5,336 kits from a rabbit sire line, from 1,255 litters in 14 batches and 667 cages. A five-trait mixed model (also with metabolic weight on R, MR ) was implemented including, for each trait, the systematic effects of batch, body weight at weaning, parity order and litter size; and the random effects of litter, additive genetic and individual. A Bayesian analysis was performed. Conditional traits such as and were obtained from elements of additive genetics ( and ) or phenotypic ( and ) (co)variance matrices. In the first case, heritabilities were low (0.07 and 0.06 for and , respectively) but null genetic correlation between the conditional and conditioning traits is guaranteed. In the second case, heritabilities were higher (0.22 and 0.16 for and , respectively) but the genetic correlation between and was moderate (0.58). Heritability of GR was low (0.08). This trait was negatively correlated with and of animals on F, which indicate a different genetic background. The correlation between GR and GF was also low to moderate (0.48) and the additive variance of GF was almost four times that of GR , suggesting the presence of a substantial genotype by feeding regimen interaction.