分位数回归的一种非参数方法。

Q2 Mathematics
Mei Ling Huang, Christine Nguyen
{"title":"分位数回归的一种非参数方法。","authors":"Mei Ling Huang,&nbsp;Christine Nguyen","doi":"10.1186/s40488-018-0084-9","DOIUrl":null,"url":null,"abstract":"<p><p>Quantile regression estimates conditional quantiles and has wide applications in the real world. Estimating high conditional quantiles is an important problem. The regular quantile regression (QR) method often designs a linear or non-linear model, then estimates the coefficients to obtain the estimated conditional quantiles. This approach may be restricted by the linear model setting. To overcome this problem, this paper proposes a direct nonparametric quantile regression method with five-step algorithm. Monte Carlo simulations show good efficiency for the proposed direct QR estimator relative to the regular QR estimator. The paper also investigates two real-world examples of applications by using the proposed method. Studies of the simulations and the examples illustrate that the proposed direct nonparametric quantile regression model fits the data set better than the regular quantile regression method.</p>","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":"5 1","pages":"3"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40488-018-0084-9","citationCount":"3","resultStr":"{\"title\":\"A nonparametric approach for quantile regression.\",\"authors\":\"Mei Ling Huang,&nbsp;Christine Nguyen\",\"doi\":\"10.1186/s40488-018-0084-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantile regression estimates conditional quantiles and has wide applications in the real world. Estimating high conditional quantiles is an important problem. The regular quantile regression (QR) method often designs a linear or non-linear model, then estimates the coefficients to obtain the estimated conditional quantiles. This approach may be restricted by the linear model setting. To overcome this problem, this paper proposes a direct nonparametric quantile regression method with five-step algorithm. Monte Carlo simulations show good efficiency for the proposed direct QR estimator relative to the regular QR estimator. The paper also investigates two real-world examples of applications by using the proposed method. Studies of the simulations and the examples illustrate that the proposed direct nonparametric quantile regression model fits the data set better than the regular quantile regression method.</p>\",\"PeriodicalId\":52216,\"journal\":{\"name\":\"Journal of Statistical Distributions and Applications\",\"volume\":\"5 1\",\"pages\":\"3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40488-018-0084-9\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Distributions and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40488-018-0084-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/7/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Distributions and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40488-018-0084-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/7/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

摘要

分位数回归估计条件分位数,在现实世界中有着广泛的应用。估计高条件分位数是一个重要的问题。正则分位数回归(QR)方法通常设计线性或非线性模型,然后估计系数以获得估计的条件分位数。这种方法可能受到线性模型设置的限制。为了克服这一问题,本文提出了一种五步算法的直接非参数分位数回归方法。蒙特卡罗模拟表明,相对于常规QR估计,所提出的直接QR估计具有良好的效率。本文还使用所提出的方法研究了两个实际应用实例。仿真和实例研究表明,所提出的直接非参数分位数回归模型比常规分位数回归方法更适合数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A nonparametric approach for quantile regression.

A nonparametric approach for quantile regression.

A nonparametric approach for quantile regression.

A nonparametric approach for quantile regression.

Quantile regression estimates conditional quantiles and has wide applications in the real world. Estimating high conditional quantiles is an important problem. The regular quantile regression (QR) method often designs a linear or non-linear model, then estimates the coefficients to obtain the estimated conditional quantiles. This approach may be restricted by the linear model setting. To overcome this problem, this paper proposes a direct nonparametric quantile regression method with five-step algorithm. Monte Carlo simulations show good efficiency for the proposed direct QR estimator relative to the regular QR estimator. The paper also investigates two real-world examples of applications by using the proposed method. Studies of the simulations and the examples illustrate that the proposed direct nonparametric quantile regression model fits the data set better than the regular quantile regression method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Distributions and Applications
Journal of Statistical Distributions and Applications Decision Sciences-Statistics, Probability and Uncertainty
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信