生物等效性中的贝叶斯两阶段自适应设计。

IF 1.2 4区 数学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Shengjie Liu, Jun Gao, Yuling Zheng, Lei Huang, Fangrong Yan
{"title":"生物等效性中的贝叶斯两阶段自适应设计。","authors":"Shengjie Liu,&nbsp;Jun Gao,&nbsp;Yuling Zheng,&nbsp;Lei Huang,&nbsp;Fangrong Yan","doi":"10.1515/ijb-2018-0105","DOIUrl":null,"url":null,"abstract":"<p><p>Bioequivalence (BE) studies are an integral component of new drug development process, and play an important role in approval and marketing of generic drug products. However, existing design and evaluation methods are basically under the framework of frequentist theory, while few implements Bayesian ideas. Based on the bioequivalence predictive probability model and sample re-estimation strategy, we propose a new Bayesian two-stage adaptive design and explore its application in bioequivalence testing. The new design differs from existing two-stage design (such as Potvin's method B, C) in the following aspects. First, it not only incorporates historical information and expert information, but further combines experimental data flexibly to aid decision-making. Secondly, its sample re-estimation strategy is based on the ratio of the information in interim analysis to total information, which is simpler in calculation than the Potvin's method. Simulation results manifested that the two-stage design can be combined with various stop boundary functions, and the results are different. Moreover, the proposed method saves sample size compared to the Potvin's method under the conditions that type I error rate is below 0.05 and statistical power reaches 80 %.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2018-0105","citationCount":"3","resultStr":"{\"title\":\"Bayesian Two-Stage Adaptive Design in Bioequivalence.\",\"authors\":\"Shengjie Liu,&nbsp;Jun Gao,&nbsp;Yuling Zheng,&nbsp;Lei Huang,&nbsp;Fangrong Yan\",\"doi\":\"10.1515/ijb-2018-0105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bioequivalence (BE) studies are an integral component of new drug development process, and play an important role in approval and marketing of generic drug products. However, existing design and evaluation methods are basically under the framework of frequentist theory, while few implements Bayesian ideas. Based on the bioequivalence predictive probability model and sample re-estimation strategy, we propose a new Bayesian two-stage adaptive design and explore its application in bioequivalence testing. The new design differs from existing two-stage design (such as Potvin's method B, C) in the following aspects. First, it not only incorporates historical information and expert information, but further combines experimental data flexibly to aid decision-making. Secondly, its sample re-estimation strategy is based on the ratio of the information in interim analysis to total information, which is simpler in calculation than the Potvin's method. Simulation results manifested that the two-stage design can be combined with various stop boundary functions, and the results are different. Moreover, the proposed method saves sample size compared to the Potvin's method under the conditions that type I error rate is below 0.05 and statistical power reaches 80 %.</p>\",\"PeriodicalId\":49058,\"journal\":{\"name\":\"International Journal of Biostatistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/ijb-2018-0105\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2018-0105\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2018-0105","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

生物等效性研究是新药开发过程中不可缺少的组成部分,在仿制药的审批和上市中起着重要作用。然而,现有的设计和评价方法基本都是在频率论的框架下进行的,很少采用贝叶斯思想。基于生物等效性预测概率模型和样本重估计策略,提出了一种新的贝叶斯两阶段自适应设计,并探讨了其在生物等效性检验中的应用。新设计与现有的两阶段设计(如Potvin的方法B、C)有以下几个方面的不同。首先,它不仅融合了历史信息和专家信息,还将实验数据灵活结合,辅助决策。其次,它的样本重估计策略是基于中间分析信息与总信息的比值,计算起来比波特文方法简单。仿真结果表明,两级设计可以结合多种停止边界函数,且结果不同。在I类错误率小于0.05,统计功率达到80%的条件下,与Potvin方法相比,本文方法节省了样本量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Two-Stage Adaptive Design in Bioequivalence.

Bioequivalence (BE) studies are an integral component of new drug development process, and play an important role in approval and marketing of generic drug products. However, existing design and evaluation methods are basically under the framework of frequentist theory, while few implements Bayesian ideas. Based on the bioequivalence predictive probability model and sample re-estimation strategy, we propose a new Bayesian two-stage adaptive design and explore its application in bioequivalence testing. The new design differs from existing two-stage design (such as Potvin's method B, C) in the following aspects. First, it not only incorporates historical information and expert information, but further combines experimental data flexibly to aid decision-making. Secondly, its sample re-estimation strategy is based on the ratio of the information in interim analysis to total information, which is simpler in calculation than the Potvin's method. Simulation results manifested that the two-stage design can be combined with various stop boundary functions, and the results are different. Moreover, the proposed method saves sample size compared to the Potvin's method under the conditions that type I error rate is below 0.05 and statistical power reaches 80 %.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Biostatistics
International Journal of Biostatistics MATHEMATICAL & COMPUTATIONAL BIOLOGY-STATISTICS & PROBABILITY
CiteScore
2.10
自引率
8.30%
发文量
28
审稿时长
>12 weeks
期刊介绍: The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信