Shengjie Liu, Jun Gao, Yuling Zheng, Lei Huang, Fangrong Yan
{"title":"生物等效性中的贝叶斯两阶段自适应设计。","authors":"Shengjie Liu, Jun Gao, Yuling Zheng, Lei Huang, Fangrong Yan","doi":"10.1515/ijb-2018-0105","DOIUrl":null,"url":null,"abstract":"<p><p>Bioequivalence (BE) studies are an integral component of new drug development process, and play an important role in approval and marketing of generic drug products. However, existing design and evaluation methods are basically under the framework of frequentist theory, while few implements Bayesian ideas. Based on the bioequivalence predictive probability model and sample re-estimation strategy, we propose a new Bayesian two-stage adaptive design and explore its application in bioequivalence testing. The new design differs from existing two-stage design (such as Potvin's method B, C) in the following aspects. First, it not only incorporates historical information and expert information, but further combines experimental data flexibly to aid decision-making. Secondly, its sample re-estimation strategy is based on the ratio of the information in interim analysis to total information, which is simpler in calculation than the Potvin's method. Simulation results manifested that the two-stage design can be combined with various stop boundary functions, and the results are different. Moreover, the proposed method saves sample size compared to the Potvin's method under the conditions that type I error rate is below 0.05 and statistical power reaches 80 %.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2018-0105","citationCount":"3","resultStr":"{\"title\":\"Bayesian Two-Stage Adaptive Design in Bioequivalence.\",\"authors\":\"Shengjie Liu, Jun Gao, Yuling Zheng, Lei Huang, Fangrong Yan\",\"doi\":\"10.1515/ijb-2018-0105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bioequivalence (BE) studies are an integral component of new drug development process, and play an important role in approval and marketing of generic drug products. However, existing design and evaluation methods are basically under the framework of frequentist theory, while few implements Bayesian ideas. Based on the bioequivalence predictive probability model and sample re-estimation strategy, we propose a new Bayesian two-stage adaptive design and explore its application in bioequivalence testing. The new design differs from existing two-stage design (such as Potvin's method B, C) in the following aspects. First, it not only incorporates historical information and expert information, but further combines experimental data flexibly to aid decision-making. Secondly, its sample re-estimation strategy is based on the ratio of the information in interim analysis to total information, which is simpler in calculation than the Potvin's method. Simulation results manifested that the two-stage design can be combined with various stop boundary functions, and the results are different. Moreover, the proposed method saves sample size compared to the Potvin's method under the conditions that type I error rate is below 0.05 and statistical power reaches 80 %.</p>\",\"PeriodicalId\":49058,\"journal\":{\"name\":\"International Journal of Biostatistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/ijb-2018-0105\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2018-0105\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2018-0105","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Bayesian Two-Stage Adaptive Design in Bioequivalence.
Bioequivalence (BE) studies are an integral component of new drug development process, and play an important role in approval and marketing of generic drug products. However, existing design and evaluation methods are basically under the framework of frequentist theory, while few implements Bayesian ideas. Based on the bioequivalence predictive probability model and sample re-estimation strategy, we propose a new Bayesian two-stage adaptive design and explore its application in bioequivalence testing. The new design differs from existing two-stage design (such as Potvin's method B, C) in the following aspects. First, it not only incorporates historical information and expert information, but further combines experimental data flexibly to aid decision-making. Secondly, its sample re-estimation strategy is based on the ratio of the information in interim analysis to total information, which is simpler in calculation than the Potvin's method. Simulation results manifested that the two-stage design can be combined with various stop boundary functions, and the results are different. Moreover, the proposed method saves sample size compared to the Potvin's method under the conditions that type I error rate is below 0.05 and statistical power reaches 80 %.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.