{"title":"使用答案集编程从时间序列数据修复布尔逻辑模型。","authors":"Alexandre Lemos, Inês Lynce, Pedro T Monteiro","doi":"10.1186/s13015-019-0145-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Boolean models of biological signalling-regulatory networks are increasingly used to formally describe and understand complex biological processes. These models may become inconsistent as new data become available and need to be repaired. In the past, the focus has been shed on the inference of (classes of) models given an interaction network and time-series data sets. However, repair of existing models against new data is still in its infancy, where the process is still manually performed and therefore slow and prone to errors.</p><p><strong>Results: </strong>In this work, we propose a method with an associated tool to suggest repairs over inconsistent Boolean models, based on a set of atomic repair operations. Answer Set Programming is used to encode the minimal repair problem as a combinatorial optimization problem. In particular, given an inconsistent model, the tool provides the minimal repairs that render the model capable of generating dynamics coherent with a (set of) time-series data set(s), considering either a synchronous or an asynchronous updating scheme.</p><p><strong>Conclusions: </strong>The method was validated using known biological models from different species, as well as synthetic models obtained from randomly generated networks. We discuss the method's limitations regarding each of the updating schemes and the considered minimization algorithm.</p>","PeriodicalId":50823,"journal":{"name":"Algorithms for Molecular Biology","volume":" ","pages":"9"},"PeriodicalIF":1.5000,"publicationDate":"2019-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13015-019-0145-8","citationCount":"5","resultStr":"{\"title\":\"Repairing Boolean logical models from time-series data using Answer Set Programming.\",\"authors\":\"Alexandre Lemos, Inês Lynce, Pedro T Monteiro\",\"doi\":\"10.1186/s13015-019-0145-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Boolean models of biological signalling-regulatory networks are increasingly used to formally describe and understand complex biological processes. These models may become inconsistent as new data become available and need to be repaired. In the past, the focus has been shed on the inference of (classes of) models given an interaction network and time-series data sets. However, repair of existing models against new data is still in its infancy, where the process is still manually performed and therefore slow and prone to errors.</p><p><strong>Results: </strong>In this work, we propose a method with an associated tool to suggest repairs over inconsistent Boolean models, based on a set of atomic repair operations. Answer Set Programming is used to encode the minimal repair problem as a combinatorial optimization problem. In particular, given an inconsistent model, the tool provides the minimal repairs that render the model capable of generating dynamics coherent with a (set of) time-series data set(s), considering either a synchronous or an asynchronous updating scheme.</p><p><strong>Conclusions: </strong>The method was validated using known biological models from different species, as well as synthetic models obtained from randomly generated networks. We discuss the method's limitations regarding each of the updating schemes and the considered minimization algorithm.</p>\",\"PeriodicalId\":50823,\"journal\":{\"name\":\"Algorithms for Molecular Biology\",\"volume\":\" \",\"pages\":\"9\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2019-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13015-019-0145-8\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algorithms for Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13015-019-0145-8\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms for Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13015-019-0145-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Repairing Boolean logical models from time-series data using Answer Set Programming.
Background: Boolean models of biological signalling-regulatory networks are increasingly used to formally describe and understand complex biological processes. These models may become inconsistent as new data become available and need to be repaired. In the past, the focus has been shed on the inference of (classes of) models given an interaction network and time-series data sets. However, repair of existing models against new data is still in its infancy, where the process is still manually performed and therefore slow and prone to errors.
Results: In this work, we propose a method with an associated tool to suggest repairs over inconsistent Boolean models, based on a set of atomic repair operations. Answer Set Programming is used to encode the minimal repair problem as a combinatorial optimization problem. In particular, given an inconsistent model, the tool provides the minimal repairs that render the model capable of generating dynamics coherent with a (set of) time-series data set(s), considering either a synchronous or an asynchronous updating scheme.
Conclusions: The method was validated using known biological models from different species, as well as synthetic models obtained from randomly generated networks. We discuss the method's limitations regarding each of the updating schemes and the considered minimization algorithm.
期刊介绍:
Algorithms for Molecular Biology publishes articles on novel algorithms for biological sequence and structure analysis, phylogeny reconstruction, and combinatorial algorithms and machine learning.
Areas of interest include but are not limited to: algorithms for RNA and protein structure analysis, gene prediction and genome analysis, comparative sequence analysis and alignment, phylogeny, gene expression, machine learning, and combinatorial algorithms.
Where appropriate, manuscripts should describe applications to real-world data. However, pure algorithm papers are also welcome if future applications to biological data are to be expected, or if they address complexity or approximation issues of novel computational problems in molecular biology. Articles about novel software tools will be considered for publication if they contain some algorithmically interesting aspects.