{"title":"等边自动表征的合理性:CM 案例。","authors":"Harald Grobner","doi":"10.1007/s00605-018-1188-5","DOIUrl":null,"url":null,"abstract":"<p><p>In this note we prove a simultaneous extension of the author's joint result with M. Harris for critical values of Rankin-Selberg <i>L</i>-functions <math><mrow><mi>L</mi> <mo>(</mo> <mi>s</mi> <mo>,</mo> <mi>Π</mi> <mo>×</mo> <msup><mi>Π</mi> <mo>'</mo></msup> <mo>)</mo></mrow> </math> (Grobner and Harris in J Inst Math Jussieu 15:711-769, 2016, Thm. 3.9) to (i) general CM-fields <i>F</i> and (ii) cohomological automorphic representations <math> <mrow><msup><mi>Π</mi> <mo>'</mo></msup> <mo>=</mo> <msub><mi>Π</mi> <mn>1</mn></msub> <mo>⊞</mo> <mo>⋯</mo> <mo>⊞</mo> <msub><mi>Π</mi> <mi>k</mi></msub> </mrow> </math> which are the isobaric sum of unitary cuspidal automorphic representations <math><msub><mi>Π</mi> <mi>i</mi></msub> </math> of general linear groups of arbitrary rank over <i>F</i>. In this sense, the main result of these notes, cf. Theorem 1.9, is a generalization, as well as a complement, of the main results in Raghuram (Forum Math 28:457-489, 2016; Int Math Res Not 2:334-372, 2010. https://doi.org/10.1093/imrn/rnp127), and Mahnkopf (J Inst Math Jussieu 4:553-637, 2005).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428343/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rationality for isobaric automorphic representations: the CM-case.\",\"authors\":\"Harald Grobner\",\"doi\":\"10.1007/s00605-018-1188-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this note we prove a simultaneous extension of the author's joint result with M. Harris for critical values of Rankin-Selberg <i>L</i>-functions <math><mrow><mi>L</mi> <mo>(</mo> <mi>s</mi> <mo>,</mo> <mi>Π</mi> <mo>×</mo> <msup><mi>Π</mi> <mo>'</mo></msup> <mo>)</mo></mrow> </math> (Grobner and Harris in J Inst Math Jussieu 15:711-769, 2016, Thm. 3.9) to (i) general CM-fields <i>F</i> and (ii) cohomological automorphic representations <math> <mrow><msup><mi>Π</mi> <mo>'</mo></msup> <mo>=</mo> <msub><mi>Π</mi> <mn>1</mn></msub> <mo>⊞</mo> <mo>⋯</mo> <mo>⊞</mo> <msub><mi>Π</mi> <mi>k</mi></msub> </mrow> </math> which are the isobaric sum of unitary cuspidal automorphic representations <math><msub><mi>Π</mi> <mi>i</mi></msub> </math> of general linear groups of arbitrary rank over <i>F</i>. In this sense, the main result of these notes, cf. Theorem 1.9, is a generalization, as well as a complement, of the main results in Raghuram (Forum Math 28:457-489, 2016; Int Math Res Not 2:334-372, 2010. https://doi.org/10.1093/imrn/rnp127), and Mahnkopf (J Inst Math Jussieu 4:553-637, 2005).</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428343/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-018-1188-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/5/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00605-018-1188-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/5/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在本注释中,我们同时证明了作者与 M. Harris 针对 Rankin-Selberg L 函数 L ( s , Π × Π ' ) 临界值的联合结果(Grobner 和 Harris 在 J Inst Math Jussieu 15:711-769, 2016, Thm.9)到(i)一般 CM 场 F 和(ii)同调自形表示 Π ' = Π 1 ⋯ ⊞ Π k,它们是 F 上任意秩的一般线性群的单元簇自形表示 Π i 的等价和。从这个意义上说,这些注释的主要结果,参见定理 1.9,是对 Raghuram (Forum Math 28:457-489, 2016; Int Math Res Not 2:334-372, 2010. https://doi.org/10.1093/imrn/rnp127) 和 Mahnkopf (J Inst Math Jussieu 4:553-637, 2005) 中主要结果的概括和补充。
Rationality for isobaric automorphic representations: the CM-case.
In this note we prove a simultaneous extension of the author's joint result with M. Harris for critical values of Rankin-Selberg L-functions (Grobner and Harris in J Inst Math Jussieu 15:711-769, 2016, Thm. 3.9) to (i) general CM-fields F and (ii) cohomological automorphic representations which are the isobaric sum of unitary cuspidal automorphic representations of general linear groups of arbitrary rank over F. In this sense, the main result of these notes, cf. Theorem 1.9, is a generalization, as well as a complement, of the main results in Raghuram (Forum Math 28:457-489, 2016; Int Math Res Not 2:334-372, 2010. https://doi.org/10.1093/imrn/rnp127), and Mahnkopf (J Inst Math Jussieu 4:553-637, 2005).