IPCAPS:一个R包迭代修剪捕捉人口结构。

Q2 Decision Sciences
Source Code for Biology and Medicine Pub Date : 2019-03-20 eCollection Date: 2019-01-01 DOI:10.1186/s13029-019-0072-6
Kridsadakorn Chaichoompu, Fentaw Abegaz, Sissades Tongsima, Philip James Shaw, Anavaj Sakuntabhai, Luísa Pereira, Kristel Van Steen
{"title":"IPCAPS:一个R包迭代修剪捕捉人口结构。","authors":"Kridsadakorn Chaichoompu,&nbsp;Fentaw Abegaz,&nbsp;Sissades Tongsima,&nbsp;Philip James Shaw,&nbsp;Anavaj Sakuntabhai,&nbsp;Luísa Pereira,&nbsp;Kristel Van Steen","doi":"10.1186/s13029-019-0072-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Resolving population genetic structure is challenging, especially when dealing with closely related or geographically confined populations. Although Principal Component Analysis (PCA)-based methods and genomic variation with single nucleotide polymorphisms (SNPs) are widely used to describe shared genetic ancestry, improvements can be made especially when fine-scale population structure is the target.</p><p><strong>Results: </strong>This work presents an R package called IPCAPS, which uses SNP information for resolving possibly fine-scale population structure. The IPCAPS routines are built on the iterative pruning Principal Component Analysis (ipPCA) framework that systematically assigns individuals to genetically similar subgroups. In each iteration, our tool is able to detect and eliminate outliers, hereby avoiding severe misclassification errors.</p><p><strong>Conclusions: </strong>IPCAPS supports different measurement scales for variables used to identify substructure. Hence, panels of gene expression and methylation data can be accommodated as well. The tool can also be applied in patient sub-phenotyping contexts. IPCAPS is developed in R and is freely available from http://bio3.giga.ulg.ac.be/ipcaps.</p>","PeriodicalId":35052,"journal":{"name":"Source Code for Biology and Medicine","volume":"14 ","pages":"2"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13029-019-0072-6","citationCount":"13","resultStr":"{\"title\":\"IPCAPS: an R package for iterative pruning to capture population structure.\",\"authors\":\"Kridsadakorn Chaichoompu,&nbsp;Fentaw Abegaz,&nbsp;Sissades Tongsima,&nbsp;Philip James Shaw,&nbsp;Anavaj Sakuntabhai,&nbsp;Luísa Pereira,&nbsp;Kristel Van Steen\",\"doi\":\"10.1186/s13029-019-0072-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Resolving population genetic structure is challenging, especially when dealing with closely related or geographically confined populations. Although Principal Component Analysis (PCA)-based methods and genomic variation with single nucleotide polymorphisms (SNPs) are widely used to describe shared genetic ancestry, improvements can be made especially when fine-scale population structure is the target.</p><p><strong>Results: </strong>This work presents an R package called IPCAPS, which uses SNP information for resolving possibly fine-scale population structure. The IPCAPS routines are built on the iterative pruning Principal Component Analysis (ipPCA) framework that systematically assigns individuals to genetically similar subgroups. In each iteration, our tool is able to detect and eliminate outliers, hereby avoiding severe misclassification errors.</p><p><strong>Conclusions: </strong>IPCAPS supports different measurement scales for variables used to identify substructure. Hence, panels of gene expression and methylation data can be accommodated as well. The tool can also be applied in patient sub-phenotyping contexts. IPCAPS is developed in R and is freely available from http://bio3.giga.ulg.ac.be/ipcaps.</p>\",\"PeriodicalId\":35052,\"journal\":{\"name\":\"Source Code for Biology and Medicine\",\"volume\":\"14 \",\"pages\":\"2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13029-019-0072-6\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Source Code for Biology and Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13029-019-0072-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Source Code for Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13029-019-0072-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 13

摘要

背景:解决群体遗传结构是具有挑战性的,特别是当处理密切相关或地理上受限制的群体时。尽管基于主成分分析(PCA)的方法和单核苷酸多态性(SNPs)的基因组变异被广泛用于描述共同的遗传祖先,但当精细尺度的群体结构是目标时,可以进行改进。结果:这项工作提出了一个名为IPCAPS的R包,它使用SNP信息来解决可能的精细尺度种群结构。IPCAPS例程建立在迭代修剪主成分分析(ipPCA)框架上,该框架系统地将个体分配到基因相似的亚群。在每次迭代中,我们的工具都能够检测和消除异常值,从而避免严重的误分类错误。结论:IPCAPS对用于识别子结构的变量支持不同的测量尺度。因此,基因表达和甲基化数据面板也可以容纳。该工具也可以应用于患者亚表型背景。IPCAPS是用R语言开发的,可以从http://bio3.giga.ulg.ac.be/ipcaps免费获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

IPCAPS: an R package for iterative pruning to capture population structure.

IPCAPS: an R package for iterative pruning to capture population structure.

Background: Resolving population genetic structure is challenging, especially when dealing with closely related or geographically confined populations. Although Principal Component Analysis (PCA)-based methods and genomic variation with single nucleotide polymorphisms (SNPs) are widely used to describe shared genetic ancestry, improvements can be made especially when fine-scale population structure is the target.

Results: This work presents an R package called IPCAPS, which uses SNP information for resolving possibly fine-scale population structure. The IPCAPS routines are built on the iterative pruning Principal Component Analysis (ipPCA) framework that systematically assigns individuals to genetically similar subgroups. In each iteration, our tool is able to detect and eliminate outliers, hereby avoiding severe misclassification errors.

Conclusions: IPCAPS supports different measurement scales for variables used to identify substructure. Hence, panels of gene expression and methylation data can be accommodated as well. The tool can also be applied in patient sub-phenotyping contexts. IPCAPS is developed in R and is freely available from http://bio3.giga.ulg.ac.be/ipcaps.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Source Code for Biology and Medicine
Source Code for Biology and Medicine Decision Sciences-Information Systems and Management
自引率
0.00%
发文量
0
期刊介绍: Source Code for Biology and Medicine is a peer-reviewed open access, online journal that publishes articles on source code employed over a wide range of applications in biology and medicine. The journal"s aim is to publish source code for distribution and use in the public domain in order to advance biological and medical research. Through this dissemination, it may be possible to shorten the time required for solving certain computational problems for which there is limited source code availability or resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信