eFCM:用于纵向干预数据的增强型模糊 C-Means 算法。

Venkata Sukumar Gurugubelli, Zhouzhou Li, Honggang Wang, Hua Fang
{"title":"eFCM:用于纵向干预数据的增强型模糊 C-Means 算法。","authors":"Venkata Sukumar Gurugubelli, Zhouzhou Li, Honggang Wang, Hua Fang","doi":"10.1109/ICCNC.2018.8390419","DOIUrl":null,"url":null,"abstract":"<p><p>Clustering methods become increasingly important in analyzing heterogeneity of treatment effects, especially in longitudinal behavioral intervention studies. Methods such as K-means and Fuzzy C-means (FCM) have been widely endorsed to identify distinct groups of different types of data. Build upon our MIFuzzy [1], our goal is to concurrently handle multiple methodological issues in studying high dimensional longitudinal intervention data with missing values. Particularly, this paper focuses on the initialization issue of FCM and proposes a new initialization method to overcome the local optimal problem and decrease the convergence time in handling high-dimensional data with missing values for overlapping clusters. Based on the idea of K-means++ [9], we proposed an enhanced Fuzzy C-means clustering (eFCM) and incorporated it into our MIFuzzy. This method was evaluated using real longitudinal intervention data, classic and generic datasets. Compared to conventional FCM, our findings indicate eFCM can improve computational efficiency and avoid the local optimization.</p>","PeriodicalId":87274,"journal":{"name":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","volume":"2018 ","pages":"912-916"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428443/pdf/nihms973824.pdf","citationCount":"0","resultStr":"{\"title\":\"eFCM: An Enhanced Fuzzy C-Means Algorithm for Longitudinal Intervention Data.\",\"authors\":\"Venkata Sukumar Gurugubelli, Zhouzhou Li, Honggang Wang, Hua Fang\",\"doi\":\"10.1109/ICCNC.2018.8390419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clustering methods become increasingly important in analyzing heterogeneity of treatment effects, especially in longitudinal behavioral intervention studies. Methods such as K-means and Fuzzy C-means (FCM) have been widely endorsed to identify distinct groups of different types of data. Build upon our MIFuzzy [1], our goal is to concurrently handle multiple methodological issues in studying high dimensional longitudinal intervention data with missing values. Particularly, this paper focuses on the initialization issue of FCM and proposes a new initialization method to overcome the local optimal problem and decrease the convergence time in handling high-dimensional data with missing values for overlapping clusters. Based on the idea of K-means++ [9], we proposed an enhanced Fuzzy C-means clustering (eFCM) and incorporated it into our MIFuzzy. This method was evaluated using real longitudinal intervention data, classic and generic datasets. Compared to conventional FCM, our findings indicate eFCM can improve computational efficiency and avoid the local optimization.</p>\",\"PeriodicalId\":87274,\"journal\":{\"name\":\"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications\",\"volume\":\"2018 \",\"pages\":\"912-916\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428443/pdf/nihms973824.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCNC.2018.8390419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/6/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCNC.2018.8390419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/6/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚类方法在分析治疗效果的异质性方面越来越重要,尤其是在纵向行为干预研究中。K-means 和 Fuzzy C-means (FCM) 等方法已被广泛应用于识别不同类型数据的不同组别。基于我们的 MIFuzzy [1],我们的目标是在研究有缺失值的高维纵向干预数据时,同时处理多个方法问题。本文尤其关注 FCM 的初始化问题,并提出了一种新的初始化方法,以克服局部最优问题,缩短处理有缺失值的高维数据重叠簇的收敛时间。基于 K-means++ [9]的思想,我们提出了增强型模糊 C-means 聚类(eFCM),并将其纳入到我们的 MIFuzzy 中。我们使用真实的纵向干预数据、经典数据集和通用数据集对该方法进行了评估。与传统的 FCM 相比,我们的研究结果表明 eFCM 可以提高计算效率,避免局部优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

eFCM: An Enhanced Fuzzy C-Means Algorithm for Longitudinal Intervention Data.

eFCM: An Enhanced Fuzzy C-Means Algorithm for Longitudinal Intervention Data.

eFCM: An Enhanced Fuzzy C-Means Algorithm for Longitudinal Intervention Data.

eFCM: An Enhanced Fuzzy C-Means Algorithm for Longitudinal Intervention Data.

Clustering methods become increasingly important in analyzing heterogeneity of treatment effects, especially in longitudinal behavioral intervention studies. Methods such as K-means and Fuzzy C-means (FCM) have been widely endorsed to identify distinct groups of different types of data. Build upon our MIFuzzy [1], our goal is to concurrently handle multiple methodological issues in studying high dimensional longitudinal intervention data with missing values. Particularly, this paper focuses on the initialization issue of FCM and proposes a new initialization method to overcome the local optimal problem and decrease the convergence time in handling high-dimensional data with missing values for overlapping clusters. Based on the idea of K-means++ [9], we proposed an enhanced Fuzzy C-means clustering (eFCM) and incorporated it into our MIFuzzy. This method was evaluated using real longitudinal intervention data, classic and generic datasets. Compared to conventional FCM, our findings indicate eFCM can improve computational efficiency and avoid the local optimization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信