{"title":"交叉抑制转录因子的极限环振荡共表达:谱系混杂的模式机制。","authors":"Pavol Bokes, John R King","doi":"10.1093/imammb/dqy003","DOIUrl":null,"url":null,"abstract":"<p><p>Lineage switches are genetic regulatory motifs that govern and maintain the commitment of a developing cell to a particular cell fate. A canonical example of a lineage switch is the pair of transcription factors PU.1 and GATA-1, of which the former is affiliated with the myeloid and the latter with the erythroid lineage within the haematopoietic system. On a molecular level, PU.1 and GATA-1 positively regulate themselves and antagonize each other via direct protein-protein interactions. Here we use mathematical modelling to identify a novel type of dynamic behaviour that can be supported by such a regulatory architecture. Guided by the specifics of the PU.1-GATA-1 interaction, we formulate, using the law of mass action, a system of differential equations for the key molecular concentrations. After a series of systematic approximations, the system is reduced to a simpler one, which is tractable to phase-plane and linearization methods. The reduced system formally resembles, and generalizes, a well-known model for competitive species from mathematical ecology. However, in addition to the qualitative regimes exhibited by a pair of competitive species (exclusivity, bistable exclusivity, stable-node coexpression) it also allows for oscillatory limit-cycle coexpression. A key outcome of the model is that, in the context of cell-fate choice, such oscillations could be harnessed by a differentiating cell to prime alternately for opposite outcomes; a bifurcation-theory approach is adopted to characterize this possibility.</p>","PeriodicalId":49863,"journal":{"name":"Mathematical Medicine and Biology-A Journal of the Ima","volume":"36 1","pages":"113-137"},"PeriodicalIF":0.8000,"publicationDate":"2019-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imammb/dqy003","citationCount":"2","resultStr":"{\"title\":\"Limit-cycle oscillatory coexpression of cross-inhibitory transcription factors: a model mechanism for lineage promiscuity.\",\"authors\":\"Pavol Bokes, John R King\",\"doi\":\"10.1093/imammb/dqy003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lineage switches are genetic regulatory motifs that govern and maintain the commitment of a developing cell to a particular cell fate. A canonical example of a lineage switch is the pair of transcription factors PU.1 and GATA-1, of which the former is affiliated with the myeloid and the latter with the erythroid lineage within the haematopoietic system. On a molecular level, PU.1 and GATA-1 positively regulate themselves and antagonize each other via direct protein-protein interactions. Here we use mathematical modelling to identify a novel type of dynamic behaviour that can be supported by such a regulatory architecture. Guided by the specifics of the PU.1-GATA-1 interaction, we formulate, using the law of mass action, a system of differential equations for the key molecular concentrations. After a series of systematic approximations, the system is reduced to a simpler one, which is tractable to phase-plane and linearization methods. The reduced system formally resembles, and generalizes, a well-known model for competitive species from mathematical ecology. However, in addition to the qualitative regimes exhibited by a pair of competitive species (exclusivity, bistable exclusivity, stable-node coexpression) it also allows for oscillatory limit-cycle coexpression. A key outcome of the model is that, in the context of cell-fate choice, such oscillations could be harnessed by a differentiating cell to prime alternately for opposite outcomes; a bifurcation-theory approach is adopted to characterize this possibility.</p>\",\"PeriodicalId\":49863,\"journal\":{\"name\":\"Mathematical Medicine and Biology-A Journal of the Ima\",\"volume\":\"36 1\",\"pages\":\"113-137\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/imammb/dqy003\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Medicine and Biology-A Journal of the Ima\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/imammb/dqy003\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Medicine and Biology-A Journal of the Ima","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/imammb/dqy003","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOLOGY","Score":null,"Total":0}
Limit-cycle oscillatory coexpression of cross-inhibitory transcription factors: a model mechanism for lineage promiscuity.
Lineage switches are genetic regulatory motifs that govern and maintain the commitment of a developing cell to a particular cell fate. A canonical example of a lineage switch is the pair of transcription factors PU.1 and GATA-1, of which the former is affiliated with the myeloid and the latter with the erythroid lineage within the haematopoietic system. On a molecular level, PU.1 and GATA-1 positively regulate themselves and antagonize each other via direct protein-protein interactions. Here we use mathematical modelling to identify a novel type of dynamic behaviour that can be supported by such a regulatory architecture. Guided by the specifics of the PU.1-GATA-1 interaction, we formulate, using the law of mass action, a system of differential equations for the key molecular concentrations. After a series of systematic approximations, the system is reduced to a simpler one, which is tractable to phase-plane and linearization methods. The reduced system formally resembles, and generalizes, a well-known model for competitive species from mathematical ecology. However, in addition to the qualitative regimes exhibited by a pair of competitive species (exclusivity, bistable exclusivity, stable-node coexpression) it also allows for oscillatory limit-cycle coexpression. A key outcome of the model is that, in the context of cell-fate choice, such oscillations could be harnessed by a differentiating cell to prime alternately for opposite outcomes; a bifurcation-theory approach is adopted to characterize this possibility.
期刊介绍:
Formerly the IMA Journal of Mathematics Applied in Medicine and Biology.
Mathematical Medicine and Biology publishes original articles with a significant mathematical content addressing topics in medicine and biology. Papers exploiting modern developments in applied mathematics are particularly welcome. The biomedical relevance of mathematical models should be demonstrated clearly and validation by comparison against experiment is strongly encouraged.
The journal welcomes contributions relevant to any area of the life sciences including:
-biomechanics-
biophysics-
cell biology-
developmental biology-
ecology and the environment-
epidemiology-
immunology-
infectious diseases-
neuroscience-
pharmacology-
physiology-
population biology