除数的偏密度函数的渐近性。

IF 1.2 2区 数学 Q1 MATHEMATICS
Journal of Geometric Analysis Pub Date : 2017-01-01 Epub Date: 2016-09-19 DOI:10.1007/s12220-016-9741-8
Julius Ross, Michael Singer
{"title":"除数的偏密度函数的渐近性。","authors":"Julius Ross,&nbsp;Michael Singer","doi":"10.1007/s12220-016-9741-8","DOIUrl":null,"url":null,"abstract":"<p><p>We study the asymptotic behaviour of the partial density function associated to sections of a positive hermitian line bundle that vanish to a particular order along a fixed divisor <i>Y</i>. Assuming the data in question is invariant under an <math><msup><mi>S</mi> <mn>1</mn></msup> </math> -action (locally around <i>Y</i>) we prove that this density function has a distributional asymptotic expansion that is in fact smooth upon passing to a suitable real blow-up. Moreover we recover the existence of the \"forbidden region\" <i>R</i> on which the density function is exponentially small, and prove that it has an \"error-function\" behaviour across the boundary <math><mrow><mi>∂</mi> <mi>R</mi></mrow> </math> . As an illustrative application, we use this to study a certain natural function that can be associated to a divisor in a Kähler manifold.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-016-9741-8","citationCount":"26","resultStr":"{\"title\":\"Asymptotics of Partial Density Functions for Divisors.\",\"authors\":\"Julius Ross,&nbsp;Michael Singer\",\"doi\":\"10.1007/s12220-016-9741-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We study the asymptotic behaviour of the partial density function associated to sections of a positive hermitian line bundle that vanish to a particular order along a fixed divisor <i>Y</i>. Assuming the data in question is invariant under an <math><msup><mi>S</mi> <mn>1</mn></msup> </math> -action (locally around <i>Y</i>) we prove that this density function has a distributional asymptotic expansion that is in fact smooth upon passing to a suitable real blow-up. Moreover we recover the existence of the \\\"forbidden region\\\" <i>R</i> on which the density function is exponentially small, and prove that it has an \\\"error-function\\\" behaviour across the boundary <math><mrow><mi>∂</mi> <mi>R</mi></mrow> </math> . As an illustrative application, we use this to study a certain natural function that can be associated to a divisor in a Kähler manifold.</p>\",\"PeriodicalId\":56121,\"journal\":{\"name\":\"Journal of Geometric Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12220-016-9741-8\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometric Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-016-9741-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/9/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-016-9741-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/9/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 26

摘要

我们研究了沿固定除数Y以特定阶消失的正厄米线束部分的偏密度函数的渐近行为。假设所讨论的数据在s1作用下(局部围绕Y)是不变的,我们证明了该密度函数具有一个分布渐近展开,该展开在传递到合适的实爆炸时实际上是光滑的。此外,我们恢复了密度函数指数小的“禁域”R的存在性,并证明它在边界∂R上具有“误差函数”行为。作为一个说明性的应用,我们使用它来研究可以与Kähler流形中的除数相关联的某个自然函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Asymptotics of Partial Density Functions for Divisors.

Asymptotics of Partial Density Functions for Divisors.

Asymptotics of Partial Density Functions for Divisors.

Asymptotics of Partial Density Functions for Divisors.

We study the asymptotic behaviour of the partial density function associated to sections of a positive hermitian line bundle that vanish to a particular order along a fixed divisor Y. Assuming the data in question is invariant under an S 1 -action (locally around Y) we prove that this density function has a distributional asymptotic expansion that is in fact smooth upon passing to a suitable real blow-up. Moreover we recover the existence of the "forbidden region" R on which the density function is exponentially small, and prove that it has an "error-function" behaviour across the boundary R . As an illustrative application, we use this to study a certain natural function that can be associated to a divisor in a Kähler manifold.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
9.10%
发文量
290
审稿时长
3 months
期刊介绍: JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信