Braden Hancock, Martin Bringmann, Paroma Varma, Percy Liang, Stephanie Wang, Christopher Ré
{"title":"用自然语言解释训练分类器","authors":"Braden Hancock, Martin Bringmann, Paroma Varma, Percy Liang, Stephanie Wang, Christopher Ré","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Training accurate classifiers requires many labels, but each label provides only limited information (one bit for binary classification). In this work, we propose BabbleLabble, a framework for training classifiers in which an annotator provides a natural language explanation for each labeling decision. A semantic parser converts these explanations into programmatic labeling functions that generate noisy labels for an arbitrary amount of unlabeled data, which is used to train a classifier. On three relation extraction tasks, we find that users are able to train classifiers with comparable F1 scores from 5-100× faster by providing explanations instead of just labels. Furthermore, given the inherent imperfection of labeling functions, we find that a simple rule-based semantic parser suffices.</p>","PeriodicalId":74541,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. Meeting","volume":"2018 ","pages":"1884-1895"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6534135/pdf/nihms-993798.pdf","citationCount":"0","resultStr":"{\"title\":\"Training Classifiers with Natural Language Explanations.\",\"authors\":\"Braden Hancock, Martin Bringmann, Paroma Varma, Percy Liang, Stephanie Wang, Christopher Ré\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Training accurate classifiers requires many labels, but each label provides only limited information (one bit for binary classification). In this work, we propose BabbleLabble, a framework for training classifiers in which an annotator provides a natural language explanation for each labeling decision. A semantic parser converts these explanations into programmatic labeling functions that generate noisy labels for an arbitrary amount of unlabeled data, which is used to train a classifier. On three relation extraction tasks, we find that users are able to train classifiers with comparable F1 scores from 5-100× faster by providing explanations instead of just labels. Furthermore, given the inherent imperfection of labeling functions, we find that a simple rule-based semantic parser suffices.</p>\",\"PeriodicalId\":74541,\"journal\":{\"name\":\"Proceedings of the conference. Association for Computational Linguistics. Meeting\",\"volume\":\"2018 \",\"pages\":\"1884-1895\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6534135/pdf/nihms-993798.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the conference. Association for Computational Linguistics. Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the conference. Association for Computational Linguistics. Meeting","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
训练精确的分类器需要许多标签,但每个标签只能提供有限的信息(二进制分类时为一个比特)。在这项工作中,我们提出了一个用于训练分类器的框架--BabbleLabble,在这个框架中,注释者为每个标签决定提供自然语言解释。语义解析器将这些解释转换成程序化的标签函数,为任意数量的未标签数据生成噪声标签,用于训练分类器。在三个关系提取任务中,我们发现用户通过提供解释而不仅仅是标签,能够以 5-100 倍的速度训练分类器,并获得相当的 F1 分数。此外,考虑到标签功能本身的不完善,我们发现基于规则的简单语义解析器就足够了。
Training Classifiers with Natural Language Explanations.
Training accurate classifiers requires many labels, but each label provides only limited information (one bit for binary classification). In this work, we propose BabbleLabble, a framework for training classifiers in which an annotator provides a natural language explanation for each labeling decision. A semantic parser converts these explanations into programmatic labeling functions that generate noisy labels for an arbitrary amount of unlabeled data, which is used to train a classifier. On three relation extraction tasks, we find that users are able to train classifiers with comparable F1 scores from 5-100× faster by providing explanations instead of just labels. Furthermore, given the inherent imperfection of labeling functions, we find that a simple rule-based semantic parser suffices.