Weihao Tang, Jingwen Chen, Zhongyu Wang, Hongbin Xie, Huixiao Hong
{"title":"预测化学物质毒性的深度学习:一个小回顾。","authors":"Weihao Tang, Jingwen Chen, Zhongyu Wang, Hongbin Xie, Huixiao Hong","doi":"10.1080/10590501.2018.1537563","DOIUrl":null,"url":null,"abstract":"<p><p>Humans and wildlife inhabit a world with panoply of natural and synthetic chemicals. Alarmingly, only a limited number of chemicals have undergone comprehensive toxicological evaluation due to limitations of traditional toxicity testing. High-throughput screening assays provide a higher-speed alternative for conventional toxicity testing. Advancement of high-throughput bioassay technology has greatly increased chemical toxicity data volumes in the past decade, pushing toxicology research into a \"big data\" era. However, traditional data analysis methods fail to effectively process large data volumes, presenting both a challenge and an opportunity for toxicologists. Deep learning, a machine learning method leveraging deep neural networks (DNNs), is a proven useful tool for building quantitative structure-activity relationship (QSAR) models for toxicity prediction utilizing these new large datasets. In this mini review, a brief technical background on DNNs is provided, and the current state of chemical toxicity prediction models built with DNNs is reviewed. In addition, relevant toxicity data sources are summarized, possible limitations are discussed, and perspectives on DNN utilization in chemical toxicity prediction are given.</p>","PeriodicalId":51085,"journal":{"name":"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews","volume":"36 4","pages":"252-271"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10590501.2018.1537563","citationCount":"49","resultStr":"{\"title\":\"Deep learning for predicting toxicity of chemicals: a mini review.\",\"authors\":\"Weihao Tang, Jingwen Chen, Zhongyu Wang, Hongbin Xie, Huixiao Hong\",\"doi\":\"10.1080/10590501.2018.1537563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Humans and wildlife inhabit a world with panoply of natural and synthetic chemicals. Alarmingly, only a limited number of chemicals have undergone comprehensive toxicological evaluation due to limitations of traditional toxicity testing. High-throughput screening assays provide a higher-speed alternative for conventional toxicity testing. Advancement of high-throughput bioassay technology has greatly increased chemical toxicity data volumes in the past decade, pushing toxicology research into a \\\"big data\\\" era. However, traditional data analysis methods fail to effectively process large data volumes, presenting both a challenge and an opportunity for toxicologists. Deep learning, a machine learning method leveraging deep neural networks (DNNs), is a proven useful tool for building quantitative structure-activity relationship (QSAR) models for toxicity prediction utilizing these new large datasets. In this mini review, a brief technical background on DNNs is provided, and the current state of chemical toxicity prediction models built with DNNs is reviewed. In addition, relevant toxicity data sources are summarized, possible limitations are discussed, and perspectives on DNN utilization in chemical toxicity prediction are given.</p>\",\"PeriodicalId\":51085,\"journal\":{\"name\":\"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews\",\"volume\":\"36 4\",\"pages\":\"252-271\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10590501.2018.1537563\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10590501.2018.1537563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/3/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10590501.2018.1537563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/3/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Deep learning for predicting toxicity of chemicals: a mini review.
Humans and wildlife inhabit a world with panoply of natural and synthetic chemicals. Alarmingly, only a limited number of chemicals have undergone comprehensive toxicological evaluation due to limitations of traditional toxicity testing. High-throughput screening assays provide a higher-speed alternative for conventional toxicity testing. Advancement of high-throughput bioassay technology has greatly increased chemical toxicity data volumes in the past decade, pushing toxicology research into a "big data" era. However, traditional data analysis methods fail to effectively process large data volumes, presenting both a challenge and an opportunity for toxicologists. Deep learning, a machine learning method leveraging deep neural networks (DNNs), is a proven useful tool for building quantitative structure-activity relationship (QSAR) models for toxicity prediction utilizing these new large datasets. In this mini review, a brief technical background on DNNs is provided, and the current state of chemical toxicity prediction models built with DNNs is reviewed. In addition, relevant toxicity data sources are summarized, possible limitations are discussed, and perspectives on DNN utilization in chemical toxicity prediction are given.
期刊介绍:
Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews aims at rapid publication of reviews on important subjects in various areas of environmental toxicology, health and carcinogenesis. Among the subjects covered are risk assessments of chemicals including nanomaterials and physical agents of environmental significance, harmful organisms found in the environment and toxic agents they produce, and food and drugs as environmental factors. It includes basic research, methodology, host susceptibility, mechanistic studies, theoretical modeling, environmental and geotechnical engineering, and environmental protection. Submission to this journal is primarily on an invitational basis. All submissions should be made through the Editorial Manager site, and are subject to peer review by independent, anonymous expert referees. Please review the instructions for authors for manuscript submission guidance.