类别到测量和测量到类别统计的期望值:模拟研究。

Journal of applied measurement Pub Date : 2019-01-01
Eivind Kaspersen
{"title":"类别到测量和测量到类别统计的期望值:模拟研究。","authors":"Eivind Kaspersen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>There are many sources of evidence for a well-functioning rating-scale. Two of these sources are analyses of measure-to-category and category-to-measure statistics. An absolute cut-value of 40% for these statistics has been suggested. However, no evidence exists in the literature that this value is appropriate. Thus, this paper discusses the results of simulation studies that examined the expected values in different contexts. The study concludes that a static cut-value of 40% should be replaced with expected values for measure-to-category and category-to-measure analyses.</p>","PeriodicalId":73608,"journal":{"name":"Journal of applied measurement","volume":"20 2","pages":"146-153"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expected Values for Category-To-Measure and Measure-To-Category Statistics: A Simulation Study.\",\"authors\":\"Eivind Kaspersen\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There are many sources of evidence for a well-functioning rating-scale. Two of these sources are analyses of measure-to-category and category-to-measure statistics. An absolute cut-value of 40% for these statistics has been suggested. However, no evidence exists in the literature that this value is appropriate. Thus, this paper discusses the results of simulation studies that examined the expected values in different contexts. The study concludes that a static cut-value of 40% should be replaced with expected values for measure-to-category and category-to-measure analyses.</p>\",\"PeriodicalId\":73608,\"journal\":{\"name\":\"Journal of applied measurement\",\"volume\":\"20 2\",\"pages\":\"146-153\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied measurement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied measurement","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有很多证据可以证明一个运作良好的评定量表。其中两个来源是测量对类别和类别对测量统计的分析。这些统计数据的绝对临界值为40%。然而,文献中没有证据表明这个值是合适的。因此,本文讨论了在不同背景下检验期望值的模拟研究结果。该研究的结论是,在测量到类别和类别到测量的分析中,40%的静态临界值应该被期望值所取代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expected Values for Category-To-Measure and Measure-To-Category Statistics: A Simulation Study.

There are many sources of evidence for a well-functioning rating-scale. Two of these sources are analyses of measure-to-category and category-to-measure statistics. An absolute cut-value of 40% for these statistics has been suggested. However, no evidence exists in the literature that this value is appropriate. Thus, this paper discusses the results of simulation studies that examined the expected values in different contexts. The study concludes that a static cut-value of 40% should be replaced with expected values for measure-to-category and category-to-measure analyses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信