Naiara Santana-Codina, Joseph D Mancias, Alec C Kimmelman
{"title":"自噬在癌症中的作用。","authors":"Naiara Santana-Codina, Joseph D Mancias, Alec C Kimmelman","doi":"10.1146/annurev-cancerbio-041816-122338","DOIUrl":null,"url":null,"abstract":"Autophagy is a highly conserved and regulated process that targets proteins and damaged organelles for lysosomal degradation to maintain cell metabolism, genomic integrity, and cell survival. The role of autophagy in cancer is dynamic and depends, in part, on tumor type and stage. Although autophagy constrains tumor initiation in normal tissue, some tumors rely on autophagy for tumor promotion and maintenance. Studies in genetically engineered mouse models support the idea that autophagy can constrain tumor initiation by regulating DNA damage and oxidative stress. In established tumors, autophagy can also be required for tumor maintenance, allowing tumors to survive environmental stress and providing intermediates for cell metabolism. Autophagy can also be induced in response to chemotherapeutics, acting as a drug-resistance mechanism. Therefore, targeting autophagy is an attractive cancer therapeutic option currently undergoing validation in clinical trials.","PeriodicalId":54233,"journal":{"name":"Annual Review of Cancer Biology-Series","volume":"1 ","pages":"19-39"},"PeriodicalIF":4.7000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-cancerbio-041816-122338","citationCount":"127","resultStr":"{\"title\":\"The Role of Autophagy in Cancer.\",\"authors\":\"Naiara Santana-Codina, Joseph D Mancias, Alec C Kimmelman\",\"doi\":\"10.1146/annurev-cancerbio-041816-122338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autophagy is a highly conserved and regulated process that targets proteins and damaged organelles for lysosomal degradation to maintain cell metabolism, genomic integrity, and cell survival. The role of autophagy in cancer is dynamic and depends, in part, on tumor type and stage. Although autophagy constrains tumor initiation in normal tissue, some tumors rely on autophagy for tumor promotion and maintenance. Studies in genetically engineered mouse models support the idea that autophagy can constrain tumor initiation by regulating DNA damage and oxidative stress. In established tumors, autophagy can also be required for tumor maintenance, allowing tumors to survive environmental stress and providing intermediates for cell metabolism. Autophagy can also be induced in response to chemotherapeutics, acting as a drug-resistance mechanism. Therefore, targeting autophagy is an attractive cancer therapeutic option currently undergoing validation in clinical trials.\",\"PeriodicalId\":54233,\"journal\":{\"name\":\"Annual Review of Cancer Biology-Series\",\"volume\":\"1 \",\"pages\":\"19-39\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev-cancerbio-041816-122338\",\"citationCount\":\"127\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Cancer Biology-Series\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-cancerbio-041816-122338\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Cancer Biology-Series","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-cancerbio-041816-122338","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Autophagy is a highly conserved and regulated process that targets proteins and damaged organelles for lysosomal degradation to maintain cell metabolism, genomic integrity, and cell survival. The role of autophagy in cancer is dynamic and depends, in part, on tumor type and stage. Although autophagy constrains tumor initiation in normal tissue, some tumors rely on autophagy for tumor promotion and maintenance. Studies in genetically engineered mouse models support the idea that autophagy can constrain tumor initiation by regulating DNA damage and oxidative stress. In established tumors, autophagy can also be required for tumor maintenance, allowing tumors to survive environmental stress and providing intermediates for cell metabolism. Autophagy can also be induced in response to chemotherapeutics, acting as a drug-resistance mechanism. Therefore, targeting autophagy is an attractive cancer therapeutic option currently undergoing validation in clinical trials.
期刊介绍:
The Annual Review of Cancer Biology offers comprehensive reviews on various topics within cancer research, covering pivotal and emerging areas in the field. As our understanding of cancer's fundamental mechanisms deepens and more findings transition into targeted clinical treatments, the journal is structured around three main themes: Cancer Cell Biology, Tumorigenesis and Cancer Progression, and Translational Cancer Science. The current volume of this journal has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, ensuring all articles are published under a CC BY license.