A R Almeida-Oliveira, Jcj Aquino-Junior, A Abbasi, A Santos-Dias, M C Oliveira-Junior, R W Alberca-Custodio, N C Rigonato-Oliveira, L P Salles-Dias, N R Damaceno-Rodrigues, E G Caldini, F M Arantes-Costa, A P Ligeiro-Oliveira, M G Belvisi, R P Vieira
{"title":"有氧运动对哮喘分子方面的影响:SOCS-JAK-STAT的参与。","authors":"A R Almeida-Oliveira, Jcj Aquino-Junior, A Abbasi, A Santos-Dias, M C Oliveira-Junior, R W Alberca-Custodio, N C Rigonato-Oliveira, L P Salles-Dias, N R Damaceno-Rodrigues, E G Caldini, F M Arantes-Costa, A P Ligeiro-Oliveira, M G Belvisi, R P Vieira","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Aerobic training (AT) decreases airway inflammation in asthma, but the underlying cellular and molecular mechanisms are not completely understood. Thus, this study evaluated the participation of SOCS-JAK-STAT signaling in the effects of AT on airway inflammation, remodeling and hyperresponsiveness in a model of allergic airway inflammation.</p><p><strong>Methods: </strong>C57Bl/6 mice were divided into Control (Co), Exercise (Ex), HDM (HDM), and HDM+Exercise (HDM+ Ex). Dermatophagoides pteronyssinus (100ug/mouse) were administered oro-tracheally on days 0, 7, 14, 21, 28, 35, 42 and 49. AT was performed in a treadmill during 4 weeks in moderate intensity, from day 24 until day 52.</p><p><strong>Results: </strong>AT inhibited HDM-induced total cells (p<0.001), eosinophils (p<0.01), neutrophils (p<0.01) and lymphocytes (p<0.01) in BAL, and eosinophils (p<0.01), neutrophils (p<0.01) and lymphocytes (p<0.01) in peribronchial space. AT also reduced BAL levels of IL-4 (p<0.001), IL-5 (p<0.001), IL-13 (p<0.001), CXCL1 (p<0.01), IL-17 (p<0.01), IL-23 (p<0.05), IL-33 (p<0.05), while increased IL- 10 (p<0.05). Airway collagen fibers (p<0.01), elastic fibers p<0.01) and mucin (p<0.01) were also reduced by AT. AT also inhibited HDM-induced airway hyperresponsiveness (AHR) to methacholine 6,25mg/ml (p<0.01), 12,5mg/mL (p<0.01), 25mg/mL (p<0.01) and 50mg/mL (p<0.01). Mechanistically, AT reduced the expression of STAT6 (p<0.05), STAT3 (p<0.001), STAT5 (p<0.01) and JAK2 (p<0.001), similarly by peribronchial leukocytes and by airway epithelial cells. SOCS1 expression (p<0.001) was upregulated in leukocytes and in epithelial cells, SOCS2 (p<0.01) was upregulated in leukocytes and SOCS3 down-regulated in leukocytes (p<0.05) and in epithelial cells (p<0.001).</p><p><strong>Conclusions: </strong>AT reduces asthma phenotype involving SOCSJAK- STAT signaling.</p>","PeriodicalId":50468,"journal":{"name":"Exercise Immunology Review","volume":"25 ","pages":"50-62"},"PeriodicalIF":3.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of aerobic exercise on molecular aspects of asthma: involvement of SOCS-JAK-STAT.\",\"authors\":\"A R Almeida-Oliveira, Jcj Aquino-Junior, A Abbasi, A Santos-Dias, M C Oliveira-Junior, R W Alberca-Custodio, N C Rigonato-Oliveira, L P Salles-Dias, N R Damaceno-Rodrigues, E G Caldini, F M Arantes-Costa, A P Ligeiro-Oliveira, M G Belvisi, R P Vieira\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Aerobic training (AT) decreases airway inflammation in asthma, but the underlying cellular and molecular mechanisms are not completely understood. Thus, this study evaluated the participation of SOCS-JAK-STAT signaling in the effects of AT on airway inflammation, remodeling and hyperresponsiveness in a model of allergic airway inflammation.</p><p><strong>Methods: </strong>C57Bl/6 mice were divided into Control (Co), Exercise (Ex), HDM (HDM), and HDM+Exercise (HDM+ Ex). Dermatophagoides pteronyssinus (100ug/mouse) were administered oro-tracheally on days 0, 7, 14, 21, 28, 35, 42 and 49. AT was performed in a treadmill during 4 weeks in moderate intensity, from day 24 until day 52.</p><p><strong>Results: </strong>AT inhibited HDM-induced total cells (p<0.001), eosinophils (p<0.01), neutrophils (p<0.01) and lymphocytes (p<0.01) in BAL, and eosinophils (p<0.01), neutrophils (p<0.01) and lymphocytes (p<0.01) in peribronchial space. AT also reduced BAL levels of IL-4 (p<0.001), IL-5 (p<0.001), IL-13 (p<0.001), CXCL1 (p<0.01), IL-17 (p<0.01), IL-23 (p<0.05), IL-33 (p<0.05), while increased IL- 10 (p<0.05). Airway collagen fibers (p<0.01), elastic fibers p<0.01) and mucin (p<0.01) were also reduced by AT. AT also inhibited HDM-induced airway hyperresponsiveness (AHR) to methacholine 6,25mg/ml (p<0.01), 12,5mg/mL (p<0.01), 25mg/mL (p<0.01) and 50mg/mL (p<0.01). Mechanistically, AT reduced the expression of STAT6 (p<0.05), STAT3 (p<0.001), STAT5 (p<0.01) and JAK2 (p<0.001), similarly by peribronchial leukocytes and by airway epithelial cells. SOCS1 expression (p<0.001) was upregulated in leukocytes and in epithelial cells, SOCS2 (p<0.01) was upregulated in leukocytes and SOCS3 down-regulated in leukocytes (p<0.05) and in epithelial cells (p<0.001).</p><p><strong>Conclusions: </strong>AT reduces asthma phenotype involving SOCSJAK- STAT signaling.</p>\",\"PeriodicalId\":50468,\"journal\":{\"name\":\"Exercise Immunology Review\",\"volume\":\"25 \",\"pages\":\"50-62\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Exercise Immunology Review\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exercise Immunology Review","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Effects of aerobic exercise on molecular aspects of asthma: involvement of SOCS-JAK-STAT.
Background: Aerobic training (AT) decreases airway inflammation in asthma, but the underlying cellular and molecular mechanisms are not completely understood. Thus, this study evaluated the participation of SOCS-JAK-STAT signaling in the effects of AT on airway inflammation, remodeling and hyperresponsiveness in a model of allergic airway inflammation.
Methods: C57Bl/6 mice were divided into Control (Co), Exercise (Ex), HDM (HDM), and HDM+Exercise (HDM+ Ex). Dermatophagoides pteronyssinus (100ug/mouse) were administered oro-tracheally on days 0, 7, 14, 21, 28, 35, 42 and 49. AT was performed in a treadmill during 4 weeks in moderate intensity, from day 24 until day 52.
Results: AT inhibited HDM-induced total cells (p<0.001), eosinophils (p<0.01), neutrophils (p<0.01) and lymphocytes (p<0.01) in BAL, and eosinophils (p<0.01), neutrophils (p<0.01) and lymphocytes (p<0.01) in peribronchial space. AT also reduced BAL levels of IL-4 (p<0.001), IL-5 (p<0.001), IL-13 (p<0.001), CXCL1 (p<0.01), IL-17 (p<0.01), IL-23 (p<0.05), IL-33 (p<0.05), while increased IL- 10 (p<0.05). Airway collagen fibers (p<0.01), elastic fibers p<0.01) and mucin (p<0.01) were also reduced by AT. AT also inhibited HDM-induced airway hyperresponsiveness (AHR) to methacholine 6,25mg/ml (p<0.01), 12,5mg/mL (p<0.01), 25mg/mL (p<0.01) and 50mg/mL (p<0.01). Mechanistically, AT reduced the expression of STAT6 (p<0.05), STAT3 (p<0.001), STAT5 (p<0.01) and JAK2 (p<0.001), similarly by peribronchial leukocytes and by airway epithelial cells. SOCS1 expression (p<0.001) was upregulated in leukocytes and in epithelial cells, SOCS2 (p<0.01) was upregulated in leukocytes and SOCS3 down-regulated in leukocytes (p<0.05) and in epithelial cells (p<0.001).
Conclusions: AT reduces asthma phenotype involving SOCSJAK- STAT signaling.
期刊介绍:
Exercise Immunology Review (EIR) serves as the official publication of the International Society of Exercise and Immunology and the German Society of Sports Medicine and Prevention. It is dedicated to advancing knowledge in all areas of immunology relevant to acute exercise and regular physical activity. EIR publishes review articles and papers containing new, original data along with extensive review-like discussions. Recognizing the diverse disciplines contributing to the understanding of immune function, the journal adopts an interdisciplinary approach, facilitating the dissemination of research findings from fields such as exercise sciences, medicine, immunology, physiology, behavioral science, endocrinology, pharmacology, and psychology.