耦合隐马尔可夫模型的变分推理在拷贝数变化联合检测中的应用。

IF 1.2 4区 数学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Xiaoqiang Wang, Emilie Lebarbier, Julie Aubert, Stéphane Robin
{"title":"耦合隐马尔可夫模型的变分推理在拷贝数变化联合检测中的应用。","authors":"Xiaoqiang Wang,&nbsp;Emilie Lebarbier,&nbsp;Julie Aubert,&nbsp;Stéphane Robin","doi":"10.1515/ijb-2018-0023","DOIUrl":null,"url":null,"abstract":"<p><p>Hidden Markov models provide a natural statistical framework for the detection of the copy number variations (CNV) in genomics. In this context, we define a hidden Markov process that underlies all individuals jointly in order to detect and to classify genomics regions in different states (typically, deletion, normal or amplification). Structural variations from different individuals may be dependent. It is the case in agronomy where varietal selection program exists and species share a common phylogenetic past. We propose to take into account these dependencies inthe HMM model. When dealing with a large number of series, maximum likelihood inference (performed classically using the EM algorithm) becomes intractable. We thus propose an approximate inference algorithm based on a variational approach (VEM), implemented in the CHMM R package. A simulation study is performed to assess the performance of the proposed method and an application to the detection of structural variations in plant genomes is presented.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"15 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2018-0023","citationCount":"11","resultStr":"{\"title\":\"Variational Inference for Coupled Hidden Markov Models Applied to the Joint Detection of Copy Number Variations.\",\"authors\":\"Xiaoqiang Wang,&nbsp;Emilie Lebarbier,&nbsp;Julie Aubert,&nbsp;Stéphane Robin\",\"doi\":\"10.1515/ijb-2018-0023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hidden Markov models provide a natural statistical framework for the detection of the copy number variations (CNV) in genomics. In this context, we define a hidden Markov process that underlies all individuals jointly in order to detect and to classify genomics regions in different states (typically, deletion, normal or amplification). Structural variations from different individuals may be dependent. It is the case in agronomy where varietal selection program exists and species share a common phylogenetic past. We propose to take into account these dependencies inthe HMM model. When dealing with a large number of series, maximum likelihood inference (performed classically using the EM algorithm) becomes intractable. We thus propose an approximate inference algorithm based on a variational approach (VEM), implemented in the CHMM R package. A simulation study is performed to assess the performance of the proposed method and an application to the detection of structural variations in plant genomes is presented.</p>\",\"PeriodicalId\":49058,\"journal\":{\"name\":\"International Journal of Biostatistics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/ijb-2018-0023\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2018-0023\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2018-0023","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 11

摘要

隐马尔可夫模型为基因组学中拷贝数变异(CNV)的检测提供了一个自然的统计框架。在这种情况下,我们定义了一个隐藏的马尔可夫过程,它是所有个体共同的基础,以检测和分类不同状态的基因组区域(通常是缺失、正常或扩增)。不同个体的结构变化可能是依赖的。在农学中,品种选择程序是存在的,物种具有共同的系统发育历史。我们建议在HMM模型中考虑这些依赖关系。当处理大量序列时,极大似然推理(通常使用EM算法进行)变得难以处理。因此,我们提出了一种基于变分方法(VEM)的近似推理算法,并在CHMM R包中实现。模拟研究进行了评估所提出的方法的性能和应用,以检测结构变异的植物基因组提出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variational Inference for Coupled Hidden Markov Models Applied to the Joint Detection of Copy Number Variations.

Hidden Markov models provide a natural statistical framework for the detection of the copy number variations (CNV) in genomics. In this context, we define a hidden Markov process that underlies all individuals jointly in order to detect and to classify genomics regions in different states (typically, deletion, normal or amplification). Structural variations from different individuals may be dependent. It is the case in agronomy where varietal selection program exists and species share a common phylogenetic past. We propose to take into account these dependencies inthe HMM model. When dealing with a large number of series, maximum likelihood inference (performed classically using the EM algorithm) becomes intractable. We thus propose an approximate inference algorithm based on a variational approach (VEM), implemented in the CHMM R package. A simulation study is performed to assess the performance of the proposed method and an application to the detection of structural variations in plant genomes is presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Biostatistics
International Journal of Biostatistics MATHEMATICAL & COMPUTATIONAL BIOLOGY-STATISTICS & PROBABILITY
CiteScore
2.10
自引率
8.30%
发文量
28
审稿时长
>12 weeks
期刊介绍: The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信