缺失生物标志物的HIV感染率横断面估计。

Doug Morrison, Oliver Laeyendecker, Jacob Konikoff, Ron Brookmeyer
{"title":"缺失生物标志物的HIV感染率横断面估计。","authors":"Doug Morrison,&nbsp;Oliver Laeyendecker,&nbsp;Jacob Konikoff,&nbsp;Ron Brookmeyer","doi":"10.1515/scid-2017-0003","DOIUrl":null,"url":null,"abstract":"<p><p>Considerable progress has been made in the development of approaches for HIV incidence estimation based on a cross-sectional survey for biomarkers of recent infection. Multiple biomarkers when used in combination can increase the precision of cross-sectional HIV incidence estimates. Multi-assay algorithms (MAAs) for cross-sectional HIV incidence estimation are hierarchical stepwise algorithms for testing the biological samples with multiple biomarkers. The objective of this paper is to consider some of the statistical challenges for addressing the problem of missing biomarkers in such testing algorithms. We consider several methods for handling missing biomarkers for (1) estimating the mean window period, and (2) estimating HIV incidence from a cross sectional survey once the mean window period has been determined. We develop a conditional estimation approach for addressing the missing data challenges and compare that method with two naïve approaches. Using MAAs developed for HIV subtype B, we evaluate the methods by simulation. We show that the two naïve estimation methods lead to biased results in most of the missing data scenarios considered. The proposed conditional approach protects against bias in all of the scenarios.</p>","PeriodicalId":74867,"journal":{"name":"Statistical communications in infectious diseases","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/scid-2017-0003","citationCount":"0","resultStr":"{\"title\":\"Cross-Sectional HIV Incidence Estimation with Missing Biomarkers.\",\"authors\":\"Doug Morrison,&nbsp;Oliver Laeyendecker,&nbsp;Jacob Konikoff,&nbsp;Ron Brookmeyer\",\"doi\":\"10.1515/scid-2017-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Considerable progress has been made in the development of approaches for HIV incidence estimation based on a cross-sectional survey for biomarkers of recent infection. Multiple biomarkers when used in combination can increase the precision of cross-sectional HIV incidence estimates. Multi-assay algorithms (MAAs) for cross-sectional HIV incidence estimation are hierarchical stepwise algorithms for testing the biological samples with multiple biomarkers. The objective of this paper is to consider some of the statistical challenges for addressing the problem of missing biomarkers in such testing algorithms. We consider several methods for handling missing biomarkers for (1) estimating the mean window period, and (2) estimating HIV incidence from a cross sectional survey once the mean window period has been determined. We develop a conditional estimation approach for addressing the missing data challenges and compare that method with two naïve approaches. Using MAAs developed for HIV subtype B, we evaluate the methods by simulation. We show that the two naïve estimation methods lead to biased results in most of the missing data scenarios considered. The proposed conditional approach protects against bias in all of the scenarios.</p>\",\"PeriodicalId\":74867,\"journal\":{\"name\":\"Statistical communications in infectious diseases\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/scid-2017-0003\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical communications in infectious diseases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/scid-2017-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/7/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical communications in infectious diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/scid-2017-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/7/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于近期感染生物标志物的横断面调查的HIV发病率估计方法的发展取得了相当大的进展。多种生物标志物联合使用可提高艾滋病毒横断面发病率估计的准确性。多分析算法(MAAs)用于艾滋病毒感染率的横断面估计是层次逐步算法,用于检测具有多种生物标志物的生物样品。本文的目的是考虑在这种测试算法中解决缺失生物标志物问题的一些统计挑战。我们考虑了几种处理缺失生物标志物的方法:(1)估计平均窗口期,(2)一旦确定了平均窗口期,就通过横断面调查估计HIV发病率。我们开发了一种条件估计方法来解决缺失数据的挑战,并将该方法与两种naïve方法进行比较。使用针对HIV B亚型开发的MAAs,我们通过模拟来评估这些方法。我们表明,在考虑的大多数缺失数据场景中,两种naïve估计方法会导致有偏差的结果。所提出的条件方法在所有情况下都可以防止偏见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cross-Sectional HIV Incidence Estimation with Missing Biomarkers.

Cross-Sectional HIV Incidence Estimation with Missing Biomarkers.

Considerable progress has been made in the development of approaches for HIV incidence estimation based on a cross-sectional survey for biomarkers of recent infection. Multiple biomarkers when used in combination can increase the precision of cross-sectional HIV incidence estimates. Multi-assay algorithms (MAAs) for cross-sectional HIV incidence estimation are hierarchical stepwise algorithms for testing the biological samples with multiple biomarkers. The objective of this paper is to consider some of the statistical challenges for addressing the problem of missing biomarkers in such testing algorithms. We consider several methods for handling missing biomarkers for (1) estimating the mean window period, and (2) estimating HIV incidence from a cross sectional survey once the mean window period has been determined. We develop a conditional estimation approach for addressing the missing data challenges and compare that method with two naïve approaches. Using MAAs developed for HIV subtype B, we evaluate the methods by simulation. We show that the two naïve estimation methods lead to biased results in most of the missing data scenarios considered. The proposed conditional approach protects against bias in all of the scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信