基于生物发光共振能量转移2 (BRET2)的RAS生物传感器表征RAS抑制剂

Q3 Biochemistry, Genetics and Molecular Biology
Nicolas Bery, Terence H. Rabbitts
{"title":"基于生物发光共振能量转移2 (BRET2)的RAS生物传感器表征RAS抑制剂","authors":"Nicolas Bery,&nbsp;Terence H. Rabbitts","doi":"10.1002/cpcb.83","DOIUrl":null,"url":null,"abstract":"<p>Protein-protein interactions (PPIs) are principle biological processes that control normal cell growth, differentiation, and homeostasis but are also crucial in diseases such as malignancy, neuropathy, and infection. Despite the importance of PPIs in biology, this target class has been very challenging to convert to therapeutics. In the last decade, much progress has been made in the inhibition of PPIs involved in diseases, but many remain difficult such as RAS-effector interactions in cancers. We describe here a protocol for using Bioluminescence Resonance Energy Transfer 2 (BRET2)-based RAS biosensors to detect and characterize RAS PPI inhibition by macromolecules and small molecules. This method could be extended to any other small GTPases or any other PPIs of interest. © 2019 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":40051,"journal":{"name":"Current Protocols in Cell Biology","volume":"83 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpcb.83","citationCount":"6","resultStr":"{\"title\":\"Bioluminescence Resonance Energy Transfer 2 (BRET2)-Based RAS Biosensors to Characterize RAS Inhibitors\",\"authors\":\"Nicolas Bery,&nbsp;Terence H. Rabbitts\",\"doi\":\"10.1002/cpcb.83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Protein-protein interactions (PPIs) are principle biological processes that control normal cell growth, differentiation, and homeostasis but are also crucial in diseases such as malignancy, neuropathy, and infection. Despite the importance of PPIs in biology, this target class has been very challenging to convert to therapeutics. In the last decade, much progress has been made in the inhibition of PPIs involved in diseases, but many remain difficult such as RAS-effector interactions in cancers. We describe here a protocol for using Bioluminescence Resonance Energy Transfer 2 (BRET2)-based RAS biosensors to detect and characterize RAS PPI inhibition by macromolecules and small molecules. This method could be extended to any other small GTPases or any other PPIs of interest. © 2019 by John Wiley &amp; Sons, Inc.</p>\",\"PeriodicalId\":40051,\"journal\":{\"name\":\"Current Protocols in Cell Biology\",\"volume\":\"83 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cpcb.83\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Protocols in Cell Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpcb.83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpcb.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 6

摘要

蛋白-蛋白相互作用(PPIs)是控制正常细胞生长、分化和稳态的主要生物学过程,但在恶性肿瘤、神经病变和感染等疾病中也起着至关重要的作用。尽管质子泵抑制剂在生物学中很重要,但将其转化为治疗方法却非常具有挑战性。在过去十年中,在抑制与疾病有关的PPIs方面取得了很大进展,但许多仍然困难,例如癌症中的ras -效应物相互作用。我们在这里描述了一种使用基于生物发光共振能量转移2 (BRET2)的RAS生物传感器来检测和表征大分子和小分子对RAS PPI的抑制作用的方案。这种方法可以扩展到任何其他小的gtp酶或任何其他感兴趣的ppi。©2019 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bioluminescence Resonance Energy Transfer 2 (BRET2)-Based RAS Biosensors to Characterize RAS Inhibitors

Protein-protein interactions (PPIs) are principle biological processes that control normal cell growth, differentiation, and homeostasis but are also crucial in diseases such as malignancy, neuropathy, and infection. Despite the importance of PPIs in biology, this target class has been very challenging to convert to therapeutics. In the last decade, much progress has been made in the inhibition of PPIs involved in diseases, but many remain difficult such as RAS-effector interactions in cancers. We describe here a protocol for using Bioluminescence Resonance Energy Transfer 2 (BRET2)-based RAS biosensors to detect and characterize RAS PPI inhibition by macromolecules and small molecules. This method could be extended to any other small GTPases or any other PPIs of interest. © 2019 by John Wiley & Sons, Inc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Protocols in Cell Biology
Current Protocols in Cell Biology Biochemistry, Genetics and Molecular Biology-Cell Biology
自引率
0.00%
发文量
0
期刊介绍: Developed by leading scientists in the field, Current Protocols in Cell Biology is an essential reference for researchers who study the relationship between specific molecules and genes and their location, function and structure at the cellular level. Updated every three months in all formats, CPCB is constantly evolving to keep pace with the very latest discoveries and developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信