Colin R Smith, Kwang Won Choi, Dan Negrut, Darryl G Thelen
{"title":"在运动动态模拟中高效计算软骨接触压力","authors":"Colin R Smith, Kwang Won Choi, Dan Negrut, Darryl G Thelen","doi":"10.1080/21681163.2016.1172346","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this study was to assess the use of an advanced collision detection algorithm to simulate cartilage contact pressure patterns within dynamic musculoskeletal simulations of movement. We created a knee model that included articular cartilage contact for the tibiofemoral and patellofemoral joints. Knee mechanics were then predicted within the context of a dynamic gait simulation. At each time step of a simulation, ray-casting was used in conjunction with hierarchical oriented bounding boxes (OBB) to rapidly identify regions of overlap between articulating cartilage surfaces. Local cartilage contact pressure was then computed using an elastic foundation model. Collision detection implemented in parallel on a GPU provided up to a 10× speed increase when using high resolution mesh densities that had >10 triangles/mm<sup>2</sup>. However, pressure magnitudes converged at considerably lower mesh densities (2.6 triangles/mm<sup>2</sup>) where CPU and GPU implementations of collision detection exhibited equivalent performance. Simulated tibiofemoral contact locations were comparable to prior experimental measurements, while pressure magnitudes were similar to those predicted by finite element models. We conclude the use of ray-casting with hierarchical OBB for collision detection is a viable method for simulating joint contact mechanics in human movement.</p>","PeriodicalId":51800,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6366837/pdf/nihms-1501791.pdf","citationCount":"0","resultStr":"{\"title\":\"Efficient Computation of Cartilage Contact Pressures within Dynamic Simulations of Movement.\",\"authors\":\"Colin R Smith, Kwang Won Choi, Dan Negrut, Darryl G Thelen\",\"doi\":\"10.1080/21681163.2016.1172346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The objective of this study was to assess the use of an advanced collision detection algorithm to simulate cartilage contact pressure patterns within dynamic musculoskeletal simulations of movement. We created a knee model that included articular cartilage contact for the tibiofemoral and patellofemoral joints. Knee mechanics were then predicted within the context of a dynamic gait simulation. At each time step of a simulation, ray-casting was used in conjunction with hierarchical oriented bounding boxes (OBB) to rapidly identify regions of overlap between articulating cartilage surfaces. Local cartilage contact pressure was then computed using an elastic foundation model. Collision detection implemented in parallel on a GPU provided up to a 10× speed increase when using high resolution mesh densities that had >10 triangles/mm<sup>2</sup>. However, pressure magnitudes converged at considerably lower mesh densities (2.6 triangles/mm<sup>2</sup>) where CPU and GPU implementations of collision detection exhibited equivalent performance. Simulated tibiofemoral contact locations were comparable to prior experimental measurements, while pressure magnitudes were similar to those predicted by finite element models. We conclude the use of ray-casting with hierarchical OBB for collision detection is a viable method for simulating joint contact mechanics in human movement.</p>\",\"PeriodicalId\":51800,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6366837/pdf/nihms-1501791.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21681163.2016.1172346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/5/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21681163.2016.1172346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/5/13 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Efficient Computation of Cartilage Contact Pressures within Dynamic Simulations of Movement.
The objective of this study was to assess the use of an advanced collision detection algorithm to simulate cartilage contact pressure patterns within dynamic musculoskeletal simulations of movement. We created a knee model that included articular cartilage contact for the tibiofemoral and patellofemoral joints. Knee mechanics were then predicted within the context of a dynamic gait simulation. At each time step of a simulation, ray-casting was used in conjunction with hierarchical oriented bounding boxes (OBB) to rapidly identify regions of overlap between articulating cartilage surfaces. Local cartilage contact pressure was then computed using an elastic foundation model. Collision detection implemented in parallel on a GPU provided up to a 10× speed increase when using high resolution mesh densities that had >10 triangles/mm2. However, pressure magnitudes converged at considerably lower mesh densities (2.6 triangles/mm2) where CPU and GPU implementations of collision detection exhibited equivalent performance. Simulated tibiofemoral contact locations were comparable to prior experimental measurements, while pressure magnitudes were similar to those predicted by finite element models. We conclude the use of ray-casting with hierarchical OBB for collision detection is a viable method for simulating joint contact mechanics in human movement.
期刊介绍:
Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization is an international journal whose main goals are to promote solutions of excellence for both imaging and visualization of biomedical data, and establish links among researchers, clinicians, the medical technology sector and end-users. The journal provides a comprehensive forum for discussion of the current state-of-the-art in the scientific fields related to imaging and visualization, including, but not limited to: Applications of Imaging and Visualization Computational Bio- imaging and Visualization Computer Aided Diagnosis, Surgery, Therapy and Treatment Data Processing and Analysis Devices for Imaging and Visualization Grid and High Performance Computing for Imaging and Visualization Human Perception in Imaging and Visualization Image Processing and Analysis Image-based Geometric Modelling Imaging and Visualization in Biomechanics Imaging and Visualization in Biomedical Engineering Medical Clinics Medical Imaging and Visualization Multi-modal Imaging and Visualization Multiscale Imaging and Visualization Scientific Visualization Software Development for Imaging and Visualization Telemedicine Systems and Applications Virtual Reality Visual Data Mining and Knowledge Discovery.