用含PDI光敏剂的异亲超分子[M4La2Lb2]方阵探讨底物结合对光催化脱卤的影响

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL
C. Jasslie Nielsen, Petrus C. M. Laan, Raoul Plessius, Joost N. H. Reek, Jarl Ivar van der Vlugt and Sonja Pullen
{"title":"用含PDI光敏剂的异亲超分子[M4La2Lb2]方阵探讨底物结合对光催化脱卤的影响","authors":"C. Jasslie Nielsen, Petrus C. M. Laan, Raoul Plessius, Joost N. H. Reek, Jarl Ivar van der Vlugt and Sonja Pullen","doi":"10.1039/D2FD00179A","DOIUrl":null,"url":null,"abstract":"<p >Photoredox catalysis is a valuable tool in a large variety of chemical reactions. Main challenges still to be overcome are photodegradation of photocatalysts and substrates, short lifetimes of reactive intermediates, and selectivity issues due to unwanted side reactions. A potential solution to these challenges is the pre-organization of the photosensitizer, substrate and (co)-catalyst in supramolecular self-assembled structures. In such architectures, (organic) dyes can be stabilized, and higher selectivity could potentially be achieved through pre-organizing desired reaction partners <em>via</em> non-covalent interactions. Perylene diimide (PDI) is an organic dye, which can be readily reduced to its mono- and dianion. Excitation of both anions leads to highly reducing excited states, which are able to reduce a variety of substrates <em>via</em> single electron transfer. The incorporation of PDI into a heteroleptic [M<small><sub>4</sub></small>L<small><sup>a</sup></small><small><sub>2</sub></small>L<small><sup>b</sup></small><small><sub>2</sub></small>] supramolecular square has been recently demonstrated. Herein we investigate its photophysical properties and demonstrate that incorporated PDI indeed features photocatalytic activity. Initial results suggest that the pre-organisation by binding positively affects the outcome.</p>","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"244 ","pages":" 199-209"},"PeriodicalIF":3.3000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2023/fd/d2fd00179a?page=search","citationCount":"0","resultStr":"{\"title\":\"Probing the influence of substrate binding on photocatalytic dehalogenation with a heteroleptic supramolecular [M4La2Lb2] square containing PDI photosensitizers as ligands†\",\"authors\":\"C. Jasslie Nielsen, Petrus C. M. Laan, Raoul Plessius, Joost N. H. Reek, Jarl Ivar van der Vlugt and Sonja Pullen\",\"doi\":\"10.1039/D2FD00179A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Photoredox catalysis is a valuable tool in a large variety of chemical reactions. Main challenges still to be overcome are photodegradation of photocatalysts and substrates, short lifetimes of reactive intermediates, and selectivity issues due to unwanted side reactions. A potential solution to these challenges is the pre-organization of the photosensitizer, substrate and (co)-catalyst in supramolecular self-assembled structures. In such architectures, (organic) dyes can be stabilized, and higher selectivity could potentially be achieved through pre-organizing desired reaction partners <em>via</em> non-covalent interactions. Perylene diimide (PDI) is an organic dye, which can be readily reduced to its mono- and dianion. Excitation of both anions leads to highly reducing excited states, which are able to reduce a variety of substrates <em>via</em> single electron transfer. The incorporation of PDI into a heteroleptic [M<small><sub>4</sub></small>L<small><sup>a</sup></small><small><sub>2</sub></small>L<small><sup>b</sup></small><small><sub>2</sub></small>] supramolecular square has been recently demonstrated. Herein we investigate its photophysical properties and demonstrate that incorporated PDI indeed features photocatalytic activity. Initial results suggest that the pre-organisation by binding positively affects the outcome.</p>\",\"PeriodicalId\":76,\"journal\":{\"name\":\"Faraday Discussions\",\"volume\":\"244 \",\"pages\":\" 199-209\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2023/fd/d2fd00179a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Faraday Discussions\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/fd/d2fd00179a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/fd/d2fd00179a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

光氧化还原催化在多种化学反应中是一种有价值的工具。仍然需要克服的主要挑战是光催化剂和底物的光降解,活性中间体的寿命短,以及由于不必要的副反应而引起的选择性问题。解决这些挑战的一个潜在方法是在超分子自组装结构中预先组织光敏剂、底物和(co)催化剂。在这样的结构中,(有机)染料可以稳定,并且通过非共价相互作用预先组织所需的反应伙伴可以潜在地实现更高的选择性。苝二酰亚胺(PDI)是一种有机染料,它可以很容易地还原为单离子和阴离子。这两种阴离子的激发导致高度还原激发态,能够通过单电子转移还原各种底物。PDI掺入异亲性的[M4La2Lb2]超分子方阵最近已被证实。本文研究了其光物理性质,并证明掺入的PDI确实具有光催化活性。初步结果表明,通过绑定预先组织对结果有积极影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Probing the influence of substrate binding on photocatalytic dehalogenation with a heteroleptic supramolecular [M4La2Lb2] square containing PDI photosensitizers as ligands†

Probing the influence of substrate binding on photocatalytic dehalogenation with a heteroleptic supramolecular [M4La2Lb2] square containing PDI photosensitizers as ligands†

Photoredox catalysis is a valuable tool in a large variety of chemical reactions. Main challenges still to be overcome are photodegradation of photocatalysts and substrates, short lifetimes of reactive intermediates, and selectivity issues due to unwanted side reactions. A potential solution to these challenges is the pre-organization of the photosensitizer, substrate and (co)-catalyst in supramolecular self-assembled structures. In such architectures, (organic) dyes can be stabilized, and higher selectivity could potentially be achieved through pre-organizing desired reaction partners via non-covalent interactions. Perylene diimide (PDI) is an organic dye, which can be readily reduced to its mono- and dianion. Excitation of both anions leads to highly reducing excited states, which are able to reduce a variety of substrates via single electron transfer. The incorporation of PDI into a heteroleptic [M4La2Lb2] supramolecular square has been recently demonstrated. Herein we investigate its photophysical properties and demonstrate that incorporated PDI indeed features photocatalytic activity. Initial results suggest that the pre-organisation by binding positively affects the outcome.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Faraday Discussions
Faraday Discussions 化学-物理化学
自引率
0.00%
发文量
259
期刊介绍: Discussion summary and research papers from discussion meetings that focus on rapidly developing areas of physical chemistry and its interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信