Muntaser Safan, Anarina L Murillo, Devina Wadhera, Carlos Castillo-Chavez
{"title":"儿童饮食动态的建模:社会化和学校环境的作用。","authors":"Muntaser Safan, Anarina L Murillo, Devina Wadhera, Carlos Castillo-Chavez","doi":"10.1080/23737867.2018.1552543","DOIUrl":null,"url":null,"abstract":"<p><p>Childhood obesity is a health emergency in many parts of the world including the U.S. and, consequently, identifying local, regional or national intervention models capable, of altering the dynamics of obesity at scales that make a difference remains a challenge. The fact that consumption of healthful foods among most youth has yet to meet recommended nutritional standards highlights a lack of effective policies aimed at addressing the epidemic of obesity. Mathematical models are used to evaluate the roles of socialization and school environment on the diet dynamics of children. Data suggest that standard nutrition education programs may have, at best, minimal impact in altering diet dynamics at the population-level. Inclusion of peer influence (model as contagion) reinforced by the use of culturally-sensitive school menus (environmental disruption) may prove capable of modifying obesity enhancing diet dynamics; altering the diets of a significant (critical) proportion of youngsters. A framework is introduced to explore the value of behavior-based interventions and policies that account for the sociocultural environments of at risk communities. These models capture carefully choreographed scenarios to account for the fact that when dealing with diet-dynamics systems, thinking additively is not enough as it cannot account for the power of nonlinear effects.</p>","PeriodicalId":37222,"journal":{"name":"Letters in Biomathematics","volume":"5 1","pages":"275-306"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23737867.2018.1552543","citationCount":"5","resultStr":"{\"title\":\"Modeling the Diet Dynamics of Children: the Roles of Socialization and the School Environment.\",\"authors\":\"Muntaser Safan, Anarina L Murillo, Devina Wadhera, Carlos Castillo-Chavez\",\"doi\":\"10.1080/23737867.2018.1552543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Childhood obesity is a health emergency in many parts of the world including the U.S. and, consequently, identifying local, regional or national intervention models capable, of altering the dynamics of obesity at scales that make a difference remains a challenge. The fact that consumption of healthful foods among most youth has yet to meet recommended nutritional standards highlights a lack of effective policies aimed at addressing the epidemic of obesity. Mathematical models are used to evaluate the roles of socialization and school environment on the diet dynamics of children. Data suggest that standard nutrition education programs may have, at best, minimal impact in altering diet dynamics at the population-level. Inclusion of peer influence (model as contagion) reinforced by the use of culturally-sensitive school menus (environmental disruption) may prove capable of modifying obesity enhancing diet dynamics; altering the diets of a significant (critical) proportion of youngsters. A framework is introduced to explore the value of behavior-based interventions and policies that account for the sociocultural environments of at risk communities. These models capture carefully choreographed scenarios to account for the fact that when dealing with diet-dynamics systems, thinking additively is not enough as it cannot account for the power of nonlinear effects.</p>\",\"PeriodicalId\":37222,\"journal\":{\"name\":\"Letters in Biomathematics\",\"volume\":\"5 1\",\"pages\":\"275-306\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23737867.2018.1552543\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Biomathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23737867.2018.1552543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/12/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Biomathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23737867.2018.1552543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/12/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Modeling the Diet Dynamics of Children: the Roles of Socialization and the School Environment.
Childhood obesity is a health emergency in many parts of the world including the U.S. and, consequently, identifying local, regional or national intervention models capable, of altering the dynamics of obesity at scales that make a difference remains a challenge. The fact that consumption of healthful foods among most youth has yet to meet recommended nutritional standards highlights a lack of effective policies aimed at addressing the epidemic of obesity. Mathematical models are used to evaluate the roles of socialization and school environment on the diet dynamics of children. Data suggest that standard nutrition education programs may have, at best, minimal impact in altering diet dynamics at the population-level. Inclusion of peer influence (model as contagion) reinforced by the use of culturally-sensitive school menus (environmental disruption) may prove capable of modifying obesity enhancing diet dynamics; altering the diets of a significant (critical) proportion of youngsters. A framework is introduced to explore the value of behavior-based interventions and policies that account for the sociocultural environments of at risk communities. These models capture carefully choreographed scenarios to account for the fact that when dealing with diet-dynamics systems, thinking additively is not enough as it cannot account for the power of nonlinear effects.