Fedia Rebah, Chayma Ouhibi, K H Alamer, Najoua Msilini, Mouhiba Ben Nasri, Rebecca Stevens, Houneida Attia
{"title":"3个番茄渗入系对NaCl胁迫的响应比较。","authors":"Fedia Rebah, Chayma Ouhibi, K H Alamer, Najoua Msilini, Mouhiba Ben Nasri, Rebecca Stevens, Houneida Attia","doi":"10.1556/018.69.2018.4.8","DOIUrl":null,"url":null,"abstract":"<p><p>We aimed to examine the response of three tomato introgression lines (IL925.3, IL925.5 and IL925.6) to NaCl stress. These lines originated from a cross between M82 (Solanum lycopersicum) and the wild salttolerant tomato Solanum pennellii, each line containing a different fragment of the S.pennellii genome. Salt-sensitive phenotypes related to plant growth and physiology, and the response of antioxidants, pigments and antioxidant enzymes were measured. In general, salt stress decreased the fresh weight of leaves, leaf area and leaf number and an increase of Na<sup>+</sup> accumulation in aerial parts was observed, which caused a reduction in the absorption of K<sup>+</sup> and Ca<sup>2+</sup>. Salt stress also induced a decrease in chlorophyll, carotenoids and lipid peroxidation (MDA) and an increase in anthocyanins and reduced ascorbate, although some differences were seen between the lines, for example for carotenoid levels. Guaiacol peroxidase, catalase and glutathione reductase activity enhanced in aerial parts of the lines, but again some differences were seen between the three lines. It is concluded that IL925.5 might be the most sensitive line to salt stress as its dry weight loss was the greatest in response to salt and this line showed the highest Na<sup>+</sup> ion accumulation in leaves.</p>","PeriodicalId":7009,"journal":{"name":"Acta Biologica Hungarica","volume":"69 4","pages":"464-480"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1556/018.69.2018.4.8","citationCount":"5","resultStr":"{\"title\":\"Comparison of the responses to NaCl stress of three tomato introgression lines.\",\"authors\":\"Fedia Rebah, Chayma Ouhibi, K H Alamer, Najoua Msilini, Mouhiba Ben Nasri, Rebecca Stevens, Houneida Attia\",\"doi\":\"10.1556/018.69.2018.4.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We aimed to examine the response of three tomato introgression lines (IL925.3, IL925.5 and IL925.6) to NaCl stress. These lines originated from a cross between M82 (Solanum lycopersicum) and the wild salttolerant tomato Solanum pennellii, each line containing a different fragment of the S.pennellii genome. Salt-sensitive phenotypes related to plant growth and physiology, and the response of antioxidants, pigments and antioxidant enzymes were measured. In general, salt stress decreased the fresh weight of leaves, leaf area and leaf number and an increase of Na<sup>+</sup> accumulation in aerial parts was observed, which caused a reduction in the absorption of K<sup>+</sup> and Ca<sup>2+</sup>. Salt stress also induced a decrease in chlorophyll, carotenoids and lipid peroxidation (MDA) and an increase in anthocyanins and reduced ascorbate, although some differences were seen between the lines, for example for carotenoid levels. Guaiacol peroxidase, catalase and glutathione reductase activity enhanced in aerial parts of the lines, but again some differences were seen between the three lines. It is concluded that IL925.5 might be the most sensitive line to salt stress as its dry weight loss was the greatest in response to salt and this line showed the highest Na<sup>+</sup> ion accumulation in leaves.</p>\",\"PeriodicalId\":7009,\"journal\":{\"name\":\"Acta Biologica Hungarica\",\"volume\":\"69 4\",\"pages\":\"464-480\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1556/018.69.2018.4.8\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Biologica Hungarica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/018.69.2018.4.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biologica Hungarica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/018.69.2018.4.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Comparison of the responses to NaCl stress of three tomato introgression lines.
We aimed to examine the response of three tomato introgression lines (IL925.3, IL925.5 and IL925.6) to NaCl stress. These lines originated from a cross between M82 (Solanum lycopersicum) and the wild salttolerant tomato Solanum pennellii, each line containing a different fragment of the S.pennellii genome. Salt-sensitive phenotypes related to plant growth and physiology, and the response of antioxidants, pigments and antioxidant enzymes were measured. In general, salt stress decreased the fresh weight of leaves, leaf area and leaf number and an increase of Na+ accumulation in aerial parts was observed, which caused a reduction in the absorption of K+ and Ca2+. Salt stress also induced a decrease in chlorophyll, carotenoids and lipid peroxidation (MDA) and an increase in anthocyanins and reduced ascorbate, although some differences were seen between the lines, for example for carotenoid levels. Guaiacol peroxidase, catalase and glutathione reductase activity enhanced in aerial parts of the lines, but again some differences were seen between the three lines. It is concluded that IL925.5 might be the most sensitive line to salt stress as its dry weight loss was the greatest in response to salt and this line showed the highest Na+ ion accumulation in leaves.
期刊介绍:
Acta Biologica Hungarica provides a forum for original research works in the field of experimental biology. It covers cytology, functional morphology, embriology, genetics, endocrinology, cellular physiology, plant physiology, neurobiology, ethology and environmental biology with emphasis on toxicology. Publishes book reviews and advertisements.