一类广义Radon变换的注入性和稳定性。

IF 1.2 2区 数学 Q1 MATHEMATICS
Journal of Geometric Analysis Pub Date : 2017-01-01 Epub Date: 2016-06-30 DOI:10.1007/s12220-016-9729-4
Andrew Homan, Hanming Zhou
{"title":"一类广义Radon变换的注入性和稳定性。","authors":"Andrew Homan,&nbsp;Hanming Zhou","doi":"10.1007/s12220-016-9729-4","DOIUrl":null,"url":null,"abstract":"<p><p>Let (<i>M</i>, <i>g</i>) be an analytic, compact, Riemannian manifold with boundary, of dimension <math><mrow><mi>n</mi> <mo>≥</mo> <mn>2</mn></mrow> </math> . We study a class of generalized Radon transforms, integrating over a family of hypersurfaces embedded in <i>M</i>, satisfying the Bolker condition (in: Quinto, Proceedings of conference \"Seventy-five Years of Radon Transforms\", Hong Kong, 1994). Using analytic microlocal analysis, we prove a microlocal regularity theorem for generalized Radon transforms on analytic manifolds defined on an analytic family of hypersurfaces. We then show injectivity and stability for an open, dense subset of smooth generalized Radon transforms satisfying the Bolker condition, including the analytic ones.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-016-9729-4","citationCount":"20","resultStr":"{\"title\":\"Injectivity and Stability for a Generic Class of Generalized Radon Transforms.\",\"authors\":\"Andrew Homan,&nbsp;Hanming Zhou\",\"doi\":\"10.1007/s12220-016-9729-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Let (<i>M</i>, <i>g</i>) be an analytic, compact, Riemannian manifold with boundary, of dimension <math><mrow><mi>n</mi> <mo>≥</mo> <mn>2</mn></mrow> </math> . We study a class of generalized Radon transforms, integrating over a family of hypersurfaces embedded in <i>M</i>, satisfying the Bolker condition (in: Quinto, Proceedings of conference \\\"Seventy-five Years of Radon Transforms\\\", Hong Kong, 1994). Using analytic microlocal analysis, we prove a microlocal regularity theorem for generalized Radon transforms on analytic manifolds defined on an analytic family of hypersurfaces. We then show injectivity and stability for an open, dense subset of smooth generalized Radon transforms satisfying the Bolker condition, including the analytic ones.</p>\",\"PeriodicalId\":56121,\"journal\":{\"name\":\"Journal of Geometric Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12220-016-9729-4\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometric Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-016-9729-4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/6/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-016-9729-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/6/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 20

摘要

设(M, g)是一个解析的、紧的、边界为n≥2维的黎曼流形。我们研究了一类广义Radon变换,在M中嵌入的超曲面族上积分,满足Bolker条件(见:Quinto,会议论文集“Radon变换的75年”,香港,1994)。利用解析微局部分析,证明了定义在解析超曲面族上的解析流形上广义Radon变换的一个微局部正则性定理。然后,我们证明了满足Bolker条件的光滑广义Radon变换的开放稠密子集(包括解析子集)的注入性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Injectivity and Stability for a Generic Class of Generalized Radon Transforms.

Let (Mg) be an analytic, compact, Riemannian manifold with boundary, of dimension n 2 . We study a class of generalized Radon transforms, integrating over a family of hypersurfaces embedded in M, satisfying the Bolker condition (in: Quinto, Proceedings of conference "Seventy-five Years of Radon Transforms", Hong Kong, 1994). Using analytic microlocal analysis, we prove a microlocal regularity theorem for generalized Radon transforms on analytic manifolds defined on an analytic family of hypersurfaces. We then show injectivity and stability for an open, dense subset of smooth generalized Radon transforms satisfying the Bolker condition, including the analytic ones.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
9.10%
发文量
290
审稿时长
3 months
期刊介绍: JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信