Dong Wook Jekarl, Kyung Soo Kim, Seungok Lee, Myungshin Kim, Yonggoo Kim
{"title":"脓毒症病例中的细胞因子和分子网络:网络生物学方法。","authors":"Dong Wook Jekarl, Kyung Soo Kim, Seungok Lee, Myungshin Kim, Yonggoo Kim","doi":"10.1684/ecn.2018.0414","DOIUrl":null,"url":null,"abstract":"<p><p>Sepsis is a life-threatening condition of organ dysfunction caused by a dysregulated host immune response to infection. We performed network analysis of cytokine molecules and compared network structures between a systematic inflammatory response syndrome (SIRS) or normal control (NC) group and a sepsis group. We recruited SIRS (n = 33) and sepsis (n = 89) patients from electronic medical records (EMR) according to whether data on PCT, CRP, interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12p70, IL-13, IL-17, IL-22, TNF-α, and IFN-γ levels were available. From the public GEO dataset, GSE66099, GSE9960, GSE95233, GSE57065 were downloaded. Genes corresponding to 15 molecules were extracted from an expression array. A correlation matrix was formed for the 15 molecules and statistically significant molecular pairs were used as pairs for network analysis of coexpression. The number of molecular or gene expression pairs significantly correlated among the SIRS or control and sepsis groups are as follows for datasets: EMR, 15 and 15; GEO66099-1, 13 and 15; GEO9960, 13 and 11; GSE95233, 13 and 8; GSE66099-2, 15 and 14; GSE57065, 14 and 13, respectively. Network analysis revealed that network diameter, number of nodes and shortest path were equal to or lower in the sepsis group. The coexpression network in sepsis patients was relatively small sized and had lower shortest paths compared with the SIRS group or healthy control group. Cytokines with one degree (k = 1) are increased in sepsis group compared with SIRS or healthy control group. IL-9 and IL-2 were not included in network of sepsis group indicating that these cytokines showed no correlation with other cytokines. These data might imply that cytokines tend to be dysregulated in the sepsis group compared to that of SIRS or normal control groups.</p>","PeriodicalId":11749,"journal":{"name":"European cytokine network","volume":"29 3","pages":"103-111"},"PeriodicalIF":2.2000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1684/ecn.2018.0414","citationCount":"25","resultStr":"{\"title\":\"Cytokine and molecular networks in sepsis cases: a network biology approach.\",\"authors\":\"Dong Wook Jekarl, Kyung Soo Kim, Seungok Lee, Myungshin Kim, Yonggoo Kim\",\"doi\":\"10.1684/ecn.2018.0414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sepsis is a life-threatening condition of organ dysfunction caused by a dysregulated host immune response to infection. We performed network analysis of cytokine molecules and compared network structures between a systematic inflammatory response syndrome (SIRS) or normal control (NC) group and a sepsis group. We recruited SIRS (n = 33) and sepsis (n = 89) patients from electronic medical records (EMR) according to whether data on PCT, CRP, interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12p70, IL-13, IL-17, IL-22, TNF-α, and IFN-γ levels were available. From the public GEO dataset, GSE66099, GSE9960, GSE95233, GSE57065 were downloaded. Genes corresponding to 15 molecules were extracted from an expression array. A correlation matrix was formed for the 15 molecules and statistically significant molecular pairs were used as pairs for network analysis of coexpression. The number of molecular or gene expression pairs significantly correlated among the SIRS or control and sepsis groups are as follows for datasets: EMR, 15 and 15; GEO66099-1, 13 and 15; GEO9960, 13 and 11; GSE95233, 13 and 8; GSE66099-2, 15 and 14; GSE57065, 14 and 13, respectively. Network analysis revealed that network diameter, number of nodes and shortest path were equal to or lower in the sepsis group. The coexpression network in sepsis patients was relatively small sized and had lower shortest paths compared with the SIRS group or healthy control group. Cytokines with one degree (k = 1) are increased in sepsis group compared with SIRS or healthy control group. IL-9 and IL-2 were not included in network of sepsis group indicating that these cytokines showed no correlation with other cytokines. These data might imply that cytokines tend to be dysregulated in the sepsis group compared to that of SIRS or normal control groups.</p>\",\"PeriodicalId\":11749,\"journal\":{\"name\":\"European cytokine network\",\"volume\":\"29 3\",\"pages\":\"103-111\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1684/ecn.2018.0414\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European cytokine network\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1684/ecn.2018.0414\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European cytokine network","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1684/ecn.2018.0414","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Cytokine and molecular networks in sepsis cases: a network biology approach.
Sepsis is a life-threatening condition of organ dysfunction caused by a dysregulated host immune response to infection. We performed network analysis of cytokine molecules and compared network structures between a systematic inflammatory response syndrome (SIRS) or normal control (NC) group and a sepsis group. We recruited SIRS (n = 33) and sepsis (n = 89) patients from electronic medical records (EMR) according to whether data on PCT, CRP, interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12p70, IL-13, IL-17, IL-22, TNF-α, and IFN-γ levels were available. From the public GEO dataset, GSE66099, GSE9960, GSE95233, GSE57065 were downloaded. Genes corresponding to 15 molecules were extracted from an expression array. A correlation matrix was formed for the 15 molecules and statistically significant molecular pairs were used as pairs for network analysis of coexpression. The number of molecular or gene expression pairs significantly correlated among the SIRS or control and sepsis groups are as follows for datasets: EMR, 15 and 15; GEO66099-1, 13 and 15; GEO9960, 13 and 11; GSE95233, 13 and 8; GSE66099-2, 15 and 14; GSE57065, 14 and 13, respectively. Network analysis revealed that network diameter, number of nodes and shortest path were equal to or lower in the sepsis group. The coexpression network in sepsis patients was relatively small sized and had lower shortest paths compared with the SIRS group or healthy control group. Cytokines with one degree (k = 1) are increased in sepsis group compared with SIRS or healthy control group. IL-9 and IL-2 were not included in network of sepsis group indicating that these cytokines showed no correlation with other cytokines. These data might imply that cytokines tend to be dysregulated in the sepsis group compared to that of SIRS or normal control groups.
期刊介绍:
The journal that brings together all areas of work involving cytokines.
European Cytokine Network is an electronic journal that publishes original articles and abstracts every quarter to provide an essential bridge between researchers and clinicians with an interest in this cutting-edge field.
The journal has become a must-read for specialists in the field thanks to its swift publication and international circulation.
The journal is referenced in several databases, including Medline, which is testament to its scientific quality.