使用基于web的dREG网关从运行和测序数据中发现转录调控元件

Q1 Biochemistry, Genetics and Molecular Biology
Tinyi Chu, Zhong Wang, Shao-Pei Chou, Charles G. Danko
{"title":"使用基于web的dREG网关从运行和测序数据中发现转录调控元件","authors":"Tinyi Chu,&nbsp;Zhong Wang,&nbsp;Shao-Pei Chou,&nbsp;Charles G. Danko","doi":"10.1002/cpbi.70","DOIUrl":null,"url":null,"abstract":"<p>Transcription is a chromatin mark that can be used effectively to identify the location of active enhancers and promoters, collectively known as transcriptional regulatory elements (TREs). We recently introduced dREG, a tool for the identification of TREs using run-on and sequencing (RO-seq) assays, including global run-on and sequencing (GRO-seq), precision run-on and sequencing (PRO-seq), and chromatin run-on and sequencing (ChRO-seq). In this protocol, we present step-by-step instructions for running dREG on an arbitrary run-on and sequencing dataset. Users provide dREG with bigWig files (in which each read is represented by a single base) representing the location of RNA polymerase in a cell or tissue sample of interest, and dREG returns a list of genomic regions that are predicted to be active TREs. Finally, we demonstrate the use of dREG regions in discovering transcription factors controlling response to a stimulus and predicting their target genes. Together, this protocol provides detailed instructions for running dREG on arbitrary run-on and sequencing data. © 2018 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":10958,"journal":{"name":"Current protocols in bioinformatics","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpbi.70","citationCount":"22","resultStr":"{\"title\":\"Discovering Transcriptional Regulatory Elements From Run-On and Sequencing Data Using the Web-Based dREG Gateway\",\"authors\":\"Tinyi Chu,&nbsp;Zhong Wang,&nbsp;Shao-Pei Chou,&nbsp;Charles G. Danko\",\"doi\":\"10.1002/cpbi.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Transcription is a chromatin mark that can be used effectively to identify the location of active enhancers and promoters, collectively known as transcriptional regulatory elements (TREs). We recently introduced dREG, a tool for the identification of TREs using run-on and sequencing (RO-seq) assays, including global run-on and sequencing (GRO-seq), precision run-on and sequencing (PRO-seq), and chromatin run-on and sequencing (ChRO-seq). In this protocol, we present step-by-step instructions for running dREG on an arbitrary run-on and sequencing dataset. Users provide dREG with bigWig files (in which each read is represented by a single base) representing the location of RNA polymerase in a cell or tissue sample of interest, and dREG returns a list of genomic regions that are predicted to be active TREs. Finally, we demonstrate the use of dREG regions in discovering transcription factors controlling response to a stimulus and predicting their target genes. Together, this protocol provides detailed instructions for running dREG on arbitrary run-on and sequencing data. © 2018 by John Wiley &amp; Sons, Inc.</p>\",\"PeriodicalId\":10958,\"journal\":{\"name\":\"Current protocols in bioinformatics\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cpbi.70\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protocols in bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpbi.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpbi.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 22

摘要

转录是一种染色质标记,可以有效地用于识别活性增强子和启动子的位置,这些增强子和启动子统称为转录调控元件(transcriptional regulatory elements, TREs)。我们最近介绍了dREG,这是一种使用运行和测序(RO-seq)检测来鉴定TREs的工具,包括全局运行和测序(GRO-seq),精确运行和测序(PRO-seq)和染色质运行和测序(cr -seq)。在本协议中,我们提供了在任意运行和排序数据集上运行dREG的分步说明。用户向dREG提供bigWig文件(其中每个读取都由单个碱基表示),表示感兴趣的细胞或组织样本中RNA聚合酶的位置,dREG返回预测为活跃TREs的基因组区域列表。最后,我们展示了dREG区域在发现控制刺激反应的转录因子和预测其靶基因中的应用。总之,该协议提供了在任意运行和测序数据上运行dREG的详细说明。©2018 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Discovering Transcriptional Regulatory Elements From Run-On and Sequencing Data Using the Web-Based dREG Gateway

Discovering Transcriptional Regulatory Elements From Run-On and Sequencing Data Using the Web-Based dREG Gateway

Discovering Transcriptional Regulatory Elements From Run-On and Sequencing Data Using the Web-Based dREG Gateway

Transcription is a chromatin mark that can be used effectively to identify the location of active enhancers and promoters, collectively known as transcriptional regulatory elements (TREs). We recently introduced dREG, a tool for the identification of TREs using run-on and sequencing (RO-seq) assays, including global run-on and sequencing (GRO-seq), precision run-on and sequencing (PRO-seq), and chromatin run-on and sequencing (ChRO-seq). In this protocol, we present step-by-step instructions for running dREG on an arbitrary run-on and sequencing dataset. Users provide dREG with bigWig files (in which each read is represented by a single base) representing the location of RNA polymerase in a cell or tissue sample of interest, and dREG returns a list of genomic regions that are predicted to be active TREs. Finally, we demonstrate the use of dREG regions in discovering transcription factors controlling response to a stimulus and predicting their target genes. Together, this protocol provides detailed instructions for running dREG on arbitrary run-on and sequencing data. © 2018 by John Wiley & Sons, Inc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current protocols in bioinformatics
Current protocols in bioinformatics Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
0.00%
发文量
0
期刊介绍: With Current Protocols in Bioinformatics, it"s easier than ever for the life scientist to become "fluent" in bioinformatics and master the exciting new frontiers opened up by DNA sequencing. Updated every three months in all formats, CPBI is constantly evolving to keep pace with the very latest discoveries and developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信