{"title":"生物材料的动态非流形网格数据结构。","authors":"Endre Somogyi","doi":"10.24132/JWSCG.2018.26.1.3","DOIUrl":null,"url":null,"abstract":"<p><p>Computational models of biological materials enable researchers to gain insight and make testable predictions of quantitative dynamic responses to stimuli. These models are particularly challenging to develop because biological materials are (1) highly heterogeneous containing both biological cells and complex substances such as extra-cellular medium, (2) undergo structural rearrangement (3) couple biological cells with their environment via chemical and mechanical processes. Existing numerical approaches excel at either describing biological cells or solids and fluids, but have difficulty integrating them into a single simulation approach. We present a novel dynamic non-manifold mesh data structure that naturally represents biological materials with coupled chemical and mechanical processes and structural rearrangement in a unified way.</p>","PeriodicalId":39283,"journal":{"name":"Journal of WSCG","volume":"26 ","pages":"21-30"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6298431/pdf/nihms-999176.pdf","citationCount":"2","resultStr":"{\"title\":\"A Dynamic Non-Manifold Mesh Data Structure to Represent Biological Materials.\",\"authors\":\"Endre Somogyi\",\"doi\":\"10.24132/JWSCG.2018.26.1.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Computational models of biological materials enable researchers to gain insight and make testable predictions of quantitative dynamic responses to stimuli. These models are particularly challenging to develop because biological materials are (1) highly heterogeneous containing both biological cells and complex substances such as extra-cellular medium, (2) undergo structural rearrangement (3) couple biological cells with their environment via chemical and mechanical processes. Existing numerical approaches excel at either describing biological cells or solids and fluids, but have difficulty integrating them into a single simulation approach. We present a novel dynamic non-manifold mesh data structure that naturally represents biological materials with coupled chemical and mechanical processes and structural rearrangement in a unified way.</p>\",\"PeriodicalId\":39283,\"journal\":{\"name\":\"Journal of WSCG\",\"volume\":\"26 \",\"pages\":\"21-30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6298431/pdf/nihms-999176.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of WSCG\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24132/JWSCG.2018.26.1.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of WSCG","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24132/JWSCG.2018.26.1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
A Dynamic Non-Manifold Mesh Data Structure to Represent Biological Materials.
Computational models of biological materials enable researchers to gain insight and make testable predictions of quantitative dynamic responses to stimuli. These models are particularly challenging to develop because biological materials are (1) highly heterogeneous containing both biological cells and complex substances such as extra-cellular medium, (2) undergo structural rearrangement (3) couple biological cells with their environment via chemical and mechanical processes. Existing numerical approaches excel at either describing biological cells or solids and fluids, but have difficulty integrating them into a single simulation approach. We present a novel dynamic non-manifold mesh data structure that naturally represents biological materials with coupled chemical and mechanical processes and structural rearrangement in a unified way.