睾丸生殖细胞肿瘤:细胞基因组最新进展。

L Blanco, Carlos A Tirado
{"title":"睾丸生殖细胞肿瘤:细胞基因组最新进展。","authors":"L Blanco,&nbsp;Carlos A Tirado","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Testicular germ cell tumors (TGCT) are a rare neoplasia but are still the most common malignancy in males between the ages of 15 and 44. TGCTs can be divided into two main types: Seminomas (SE) and non-seminomas (NS), the latter with an earlier age of onset and a worst prognosis. One of the most consistent features of TGCTs is the gain of material in the short arm of chromosome 12, that occurs in almost 100% of TGCT cases; 80% of them involve the formation of an isochromosome of the short arm i(12p). This might be the key step that allows the lesion to progress from a germ cell neoplasia in situ (GCNIS), which is a microscopic finding preceding the TGCT and without gain in 12p, to a TGCT. Some tumors, specially SE, present a more restricted amplification of certain 12p regions such as the 12p11.2-12.1 amplicon instead of the i(12p). The mechanism that associates the gain of 12p and the development of invasiveness is not yet well understood but it is believed a number of genes are involved, including DPPA3/STELLA, SOX5, PHC2, ATF7IP and proto-oncogenes Cyclin D2 and KRAS. Genome wide association studies have allowed us to acquire a better knowledge of the pathogenesis of this type of tumor, in which multiple genes show an increase in copy numbers, higher expression or activating mutations in genes related to the KIT/ KITLG pathway like KRAS, BRAF or KIT and KITLG itself. A less frequent subtype of TGCT found in older patients are spermatocytic tumors (ST). It does not develop from a GCNIS and presents a gain of genetic material in chromosome 9 instead of 12. It is believed the overexpression of the gene DMRT1, at 9p24.2, might have a role in the development of ST. In this review we are trying to delineate the most important loci involved in testicular germ tumors, the genes involved in this pathogenesis, and attempting to describe the possible mechanisms behind this tumorigenesis.</p>","PeriodicalId":73975,"journal":{"name":"Journal of the Association of Genetic Technologists","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testicular Germ Cell Tumors: A Cytogenomic Update.\",\"authors\":\"L Blanco,&nbsp;Carlos A Tirado\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Testicular germ cell tumors (TGCT) are a rare neoplasia but are still the most common malignancy in males between the ages of 15 and 44. TGCTs can be divided into two main types: Seminomas (SE) and non-seminomas (NS), the latter with an earlier age of onset and a worst prognosis. One of the most consistent features of TGCTs is the gain of material in the short arm of chromosome 12, that occurs in almost 100% of TGCT cases; 80% of them involve the formation of an isochromosome of the short arm i(12p). This might be the key step that allows the lesion to progress from a germ cell neoplasia in situ (GCNIS), which is a microscopic finding preceding the TGCT and without gain in 12p, to a TGCT. Some tumors, specially SE, present a more restricted amplification of certain 12p regions such as the 12p11.2-12.1 amplicon instead of the i(12p). The mechanism that associates the gain of 12p and the development of invasiveness is not yet well understood but it is believed a number of genes are involved, including DPPA3/STELLA, SOX5, PHC2, ATF7IP and proto-oncogenes Cyclin D2 and KRAS. Genome wide association studies have allowed us to acquire a better knowledge of the pathogenesis of this type of tumor, in which multiple genes show an increase in copy numbers, higher expression or activating mutations in genes related to the KIT/ KITLG pathway like KRAS, BRAF or KIT and KITLG itself. A less frequent subtype of TGCT found in older patients are spermatocytic tumors (ST). It does not develop from a GCNIS and presents a gain of genetic material in chromosome 9 instead of 12. It is believed the overexpression of the gene DMRT1, at 9p24.2, might have a role in the development of ST. In this review we are trying to delineate the most important loci involved in testicular germ tumors, the genes involved in this pathogenesis, and attempting to describe the possible mechanisms behind this tumorigenesis.</p>\",\"PeriodicalId\":73975,\"journal\":{\"name\":\"Journal of the Association of Genetic Technologists\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Association of Genetic Technologists\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Association of Genetic Technologists","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:睾丸生殖细胞瘤(TGCT)是一种罕见的肿瘤,但仍是15至44岁男性最常见的恶性肿瘤。tgct可分为两种主要类型:精原细胞瘤(SE)和非精原细胞瘤(NS),后者发病年龄较早,预后最差。TGCT最一致的特征之一是12号染色体短臂的物质增加,这几乎发生在100%的TGCT病例中;其中80%涉及短臂i(12p)同工染色体的形成。这可能是允许病变从原位生殖细胞瘤(GCNIS)进展到TGCT的关键步骤,GCNIS是TGCT之前的显微镜发现,在12p中没有增益。一些肿瘤,特别是SE,表现出更有限的12p区域扩增,如12p11.2-12.1扩增子,而不是i(12p)。12p的获得与侵袭性发展的相关机制尚不清楚,但据信有许多基因参与其中,包括DPPA3/STELLA、SOX5、PHC2、ATF7IP和原癌基因Cyclin D2和KRAS。全基因组关联研究使我们能够更好地了解这类肿瘤的发病机制,其中多个基因在与KIT/ KITLG通路相关的基因(如KRAS、BRAF或KIT)和KITLG本身中表现出拷贝数增加、高表达或激活突变。在老年患者中发现的较少见的TGCT亚型是精细胞肿瘤(ST)。它不是由GCNIS发育而来,而是在第9染色体而不是第12染色体上获得遗传物质。据信,9p24.2基因DMRT1的过表达可能在st的发展中起作用。在这篇综述中,我们试图描述与睾丸生殖肿瘤有关的最重要的基因座,与这种发病机制有关的基因,并试图描述这种肿瘤发生背后的可能机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Testicular Germ Cell Tumors: A Cytogenomic Update.

Objectives: Testicular germ cell tumors (TGCT) are a rare neoplasia but are still the most common malignancy in males between the ages of 15 and 44. TGCTs can be divided into two main types: Seminomas (SE) and non-seminomas (NS), the latter with an earlier age of onset and a worst prognosis. One of the most consistent features of TGCTs is the gain of material in the short arm of chromosome 12, that occurs in almost 100% of TGCT cases; 80% of them involve the formation of an isochromosome of the short arm i(12p). This might be the key step that allows the lesion to progress from a germ cell neoplasia in situ (GCNIS), which is a microscopic finding preceding the TGCT and without gain in 12p, to a TGCT. Some tumors, specially SE, present a more restricted amplification of certain 12p regions such as the 12p11.2-12.1 amplicon instead of the i(12p). The mechanism that associates the gain of 12p and the development of invasiveness is not yet well understood but it is believed a number of genes are involved, including DPPA3/STELLA, SOX5, PHC2, ATF7IP and proto-oncogenes Cyclin D2 and KRAS. Genome wide association studies have allowed us to acquire a better knowledge of the pathogenesis of this type of tumor, in which multiple genes show an increase in copy numbers, higher expression or activating mutations in genes related to the KIT/ KITLG pathway like KRAS, BRAF or KIT and KITLG itself. A less frequent subtype of TGCT found in older patients are spermatocytic tumors (ST). It does not develop from a GCNIS and presents a gain of genetic material in chromosome 9 instead of 12. It is believed the overexpression of the gene DMRT1, at 9p24.2, might have a role in the development of ST. In this review we are trying to delineate the most important loci involved in testicular germ tumors, the genes involved in this pathogenesis, and attempting to describe the possible mechanisms behind this tumorigenesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信