重叠收益的无偏加权方差和偏度估计。

Q1 Mathematics
Swiss Journal of Economics and Statistics Pub Date : 2018-01-01 Epub Date: 2018-11-17 DOI:10.1186/s41937-018-0023-1
Stephen Taylor, Ming Fang
{"title":"重叠收益的无偏加权方差和偏度估计。","authors":"Stephen Taylor,&nbsp;Ming Fang","doi":"10.1186/s41937-018-0023-1","DOIUrl":null,"url":null,"abstract":"<p><p>This article develops unbiased weighted variance and skewness estimators for overlapping return distributions. These estimators extend the variance estimation methods constructed in Bod et. al. (Applied Financial Economics 12:155-158, 2002) and Lo and MacKinlay (Review of Financial Studies 1:41-66, 1988). In addition, they may be used in overlapping return variance or skewness ratio tests as in Charles and Darné (Journal of Economic Surveys 3:503-527, 2009) and Wong (Cardiff Economics Working Papers, 2016). An example using synthetic overlapping returns from a model fit to data from the SPY S&P 500 exchange traded fund is given in order to demonstrate under which circumstances the unbiased correction becomes significant in skewness estimation. Finally, we compare the effect of the HAC weighting schemes of Andrews (Econometrica 53:817-858, 1991) as a function of sample size and overlapping return window length.</p>","PeriodicalId":36872,"journal":{"name":"Swiss Journal of Economics and Statistics","volume":"154 1","pages":"21"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s41937-018-0023-1","citationCount":"0","resultStr":"{\"title\":\"Unbiased weighted variance and skewness estimators for overlapping returns.\",\"authors\":\"Stephen Taylor,&nbsp;Ming Fang\",\"doi\":\"10.1186/s41937-018-0023-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article develops unbiased weighted variance and skewness estimators for overlapping return distributions. These estimators extend the variance estimation methods constructed in Bod et. al. (Applied Financial Economics 12:155-158, 2002) and Lo and MacKinlay (Review of Financial Studies 1:41-66, 1988). In addition, they may be used in overlapping return variance or skewness ratio tests as in Charles and Darné (Journal of Economic Surveys 3:503-527, 2009) and Wong (Cardiff Economics Working Papers, 2016). An example using synthetic overlapping returns from a model fit to data from the SPY S&P 500 exchange traded fund is given in order to demonstrate under which circumstances the unbiased correction becomes significant in skewness estimation. Finally, we compare the effect of the HAC weighting schemes of Andrews (Econometrica 53:817-858, 1991) as a function of sample size and overlapping return window length.</p>\",\"PeriodicalId\":36872,\"journal\":{\"name\":\"Swiss Journal of Economics and Statistics\",\"volume\":\"154 1\",\"pages\":\"21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s41937-018-0023-1\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swiss Journal of Economics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s41937-018-0023-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/11/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swiss Journal of Economics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41937-018-0023-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/11/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文发展了重叠回归分布的无偏加权方差和偏度估计。这些估计器扩展了Bod等人(应用金融经济学12:155-158,2002)和Lo和MacKinlay(金融研究评论1:41-66,1988)构建的方差估计方法。此外,它们可以用于重叠回报方差或偏度比测试,如Charles和darn(《经济调查杂志》3:503-527,2009)和Wong(卡迪夫经济学工作论文,2016)。为了证明在何种情况下,无偏校正在偏度估计中变得显着,给出了一个使用SPY标准普尔500交易所交易基金数据的模型拟合的合成重叠回报的例子。最后,我们比较了Andrews (Econometrica 53:817-858, 1991)的HAC加权方案作为样本量和重叠回归窗长度的函数的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unbiased weighted variance and skewness estimators for overlapping returns.

Unbiased weighted variance and skewness estimators for overlapping returns.

Unbiased weighted variance and skewness estimators for overlapping returns.

This article develops unbiased weighted variance and skewness estimators for overlapping return distributions. These estimators extend the variance estimation methods constructed in Bod et. al. (Applied Financial Economics 12:155-158, 2002) and Lo and MacKinlay (Review of Financial Studies 1:41-66, 1988). In addition, they may be used in overlapping return variance or skewness ratio tests as in Charles and Darné (Journal of Economic Surveys 3:503-527, 2009) and Wong (Cardiff Economics Working Papers, 2016). An example using synthetic overlapping returns from a model fit to data from the SPY S&P 500 exchange traded fund is given in order to demonstrate under which circumstances the unbiased correction becomes significant in skewness estimation. Finally, we compare the effect of the HAC weighting schemes of Andrews (Econometrica 53:817-858, 1991) as a function of sample size and overlapping return window length.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Swiss Journal of Economics and Statistics
Swiss Journal of Economics and Statistics Mathematics-Statistics and Probability
CiteScore
5.20
自引率
0.00%
发文量
18
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信