木星5 μm中尺度波的地面观测和朱诺JIRAM。

IF 5.1 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Astronomical Journal Pub Date : 2018-08-01 Epub Date: 2018-07-26 DOI:10.3847/1538-3881/aace02
Leigh N Fletcher, H Melin, A Adriani, A A Simon, A Sanchez-Lavega, P T Donnelly, A Antuñano, G S Orton, R Hueso, E Kraaikamp, M H Wong, M Barnett, M L Moriconi, F Altieri, G Sindoni
{"title":"木星5 μm中尺度波的地面观测和朱诺JIRAM。","authors":"Leigh N Fletcher,&nbsp;H Melin,&nbsp;A Adriani,&nbsp;A A Simon,&nbsp;A Sanchez-Lavega,&nbsp;P T Donnelly,&nbsp;A Antuñano,&nbsp;G S Orton,&nbsp;R Hueso,&nbsp;E Kraaikamp,&nbsp;M H Wong,&nbsp;M Barnett,&nbsp;M L Moriconi,&nbsp;F Altieri,&nbsp;G Sindoni","doi":"10.3847/1538-3881/aace02","DOIUrl":null,"url":null,"abstract":"<p><p>We characterize the origin and evolution of a mesoscale wave pattern in Jupiter's North Equatorial Belt (NEB), detected for the first time at 5 <i>μ</i>m using a 2016-17 campaign of \"lucky imaging\" from the VISIR instrument on the Very Large Telescope and the NIRI instrument on the Gemini observatory, coupled with <i>M</i>-band imaging from Juno's JIRAM instrument during the first seven Juno orbits. The wave is compact, with a 1°.1-1°.4 longitude wavelength (wavelength 1300-1600 km, wavenumber 260-330) that is stable over time, with wave crests aligned largely north-south between 14°N and 17°N (planetographic). The waves were initially identified in small (10° longitude) packets immediately west of cyclones in the NEB at 16°N but extended to span wider longitude ranges over time. The waves exhibit a 7-10 K brightness temperature amplitude on top of an ∼210 K background at 5 <i>μ</i>m. The thermal structure of the NEB allows for both inertio-gravity waves and gravity waves. Despite detection at 5 <i>μ</i>m, this does not necessarily imply a deep location for the waves, and an upper tropospheric aerosol layer near 400-800 mbar could feature a gravity wave pattern modulating the visible-light reflectivity and attenuating the 5-<i>μ</i>m radiance originating from deeper levels. Strong rifting activity appears to obliterate the pattern, which can change on timescales of weeks. The NEB underwent a new expansion and contraction episode in 2016-17 with associated cyclone-anticyclone formation, which could explain why the mesoscale wave pattern was more vivid in 2017 than ever before.</p>","PeriodicalId":55582,"journal":{"name":"Astronomical Journal","volume":"156 2","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3847/1538-3881/aace02","citationCount":"14","resultStr":"{\"title\":\"Jupiter's Mesoscale Waves Observed at 5 <i>μ</i>m by Ground-based Observations and <i>Juno</i> JIRAM.\",\"authors\":\"Leigh N Fletcher,&nbsp;H Melin,&nbsp;A Adriani,&nbsp;A A Simon,&nbsp;A Sanchez-Lavega,&nbsp;P T Donnelly,&nbsp;A Antuñano,&nbsp;G S Orton,&nbsp;R Hueso,&nbsp;E Kraaikamp,&nbsp;M H Wong,&nbsp;M Barnett,&nbsp;M L Moriconi,&nbsp;F Altieri,&nbsp;G Sindoni\",\"doi\":\"10.3847/1538-3881/aace02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We characterize the origin and evolution of a mesoscale wave pattern in Jupiter's North Equatorial Belt (NEB), detected for the first time at 5 <i>μ</i>m using a 2016-17 campaign of \\\"lucky imaging\\\" from the VISIR instrument on the Very Large Telescope and the NIRI instrument on the Gemini observatory, coupled with <i>M</i>-band imaging from Juno's JIRAM instrument during the first seven Juno orbits. The wave is compact, with a 1°.1-1°.4 longitude wavelength (wavelength 1300-1600 km, wavenumber 260-330) that is stable over time, with wave crests aligned largely north-south between 14°N and 17°N (planetographic). The waves were initially identified in small (10° longitude) packets immediately west of cyclones in the NEB at 16°N but extended to span wider longitude ranges over time. The waves exhibit a 7-10 K brightness temperature amplitude on top of an ∼210 K background at 5 <i>μ</i>m. The thermal structure of the NEB allows for both inertio-gravity waves and gravity waves. Despite detection at 5 <i>μ</i>m, this does not necessarily imply a deep location for the waves, and an upper tropospheric aerosol layer near 400-800 mbar could feature a gravity wave pattern modulating the visible-light reflectivity and attenuating the 5-<i>μ</i>m radiance originating from deeper levels. Strong rifting activity appears to obliterate the pattern, which can change on timescales of weeks. The NEB underwent a new expansion and contraction episode in 2016-17 with associated cyclone-anticyclone formation, which could explain why the mesoscale wave pattern was more vivid in 2017 than ever before.</p>\",\"PeriodicalId\":55582,\"journal\":{\"name\":\"Astronomical Journal\",\"volume\":\"156 2\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3847/1538-3881/aace02\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomical Journal\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-3881/aace02\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/7/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomical Journal","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3847/1538-3881/aace02","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/7/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 14

摘要

我们描述了木星北赤道带(NEB)中尺度波模式的起源和演变,利用2016-17年超大望远镜上的VISIR仪器和双子座天文台上的NIRI仪器的“幸运成像”活动,以及朱诺号JIRAM仪器在朱诺号前7次轨道上的m波段成像,首次在5 μm波段探测到这一模式。波是紧凑的,为1°。1-1°。4个经度波长(波长1300-1600公里,波数260-330)随着时间的推移是稳定的,波峰在14°N和17°N之间主要是南北排列的(行星学)。这些巨浪最初是在东北地区16°N气旋以西的小范围(经度10°)内发现的,但随着时间的推移,它们的经度范围扩大了。在5 μm的~ 210 K背景上,光波呈现出7-10 K的亮度温度振幅。NEB的热结构允许惯性重力波和重力波。尽管在5 μm处检测到,这并不一定意味着波的深度,对流层上层气溶胶层在400-800毫巴附近可能具有重力波模式,调制可见光反射率并衰减来自更深层次的5 μm辐射。强烈的裂谷活动似乎消除了这种模式,这种模式可以在几周的时间尺度上发生变化。NEB在2016- 2017年经历了一个新的扩张和收缩时期,并伴有气旋和反气旋的形成,这可以解释为什么2017年中尺度波型比以往任何时候都更加生动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Jupiter's Mesoscale Waves Observed at 5 <i>μ</i>m by Ground-based Observations and <i>Juno</i> JIRAM.

Jupiter's Mesoscale Waves Observed at 5 <i>μ</i>m by Ground-based Observations and <i>Juno</i> JIRAM.

Jupiter's Mesoscale Waves Observed at 5 <i>μ</i>m by Ground-based Observations and <i>Juno</i> JIRAM.

Jupiter's Mesoscale Waves Observed at 5 μm by Ground-based Observations and Juno JIRAM.

We characterize the origin and evolution of a mesoscale wave pattern in Jupiter's North Equatorial Belt (NEB), detected for the first time at 5 μm using a 2016-17 campaign of "lucky imaging" from the VISIR instrument on the Very Large Telescope and the NIRI instrument on the Gemini observatory, coupled with M-band imaging from Juno's JIRAM instrument during the first seven Juno orbits. The wave is compact, with a 1°.1-1°.4 longitude wavelength (wavelength 1300-1600 km, wavenumber 260-330) that is stable over time, with wave crests aligned largely north-south between 14°N and 17°N (planetographic). The waves were initially identified in small (10° longitude) packets immediately west of cyclones in the NEB at 16°N but extended to span wider longitude ranges over time. The waves exhibit a 7-10 K brightness temperature amplitude on top of an ∼210 K background at 5 μm. The thermal structure of the NEB allows for both inertio-gravity waves and gravity waves. Despite detection at 5 μm, this does not necessarily imply a deep location for the waves, and an upper tropospheric aerosol layer near 400-800 mbar could feature a gravity wave pattern modulating the visible-light reflectivity and attenuating the 5-μm radiance originating from deeper levels. Strong rifting activity appears to obliterate the pattern, which can change on timescales of weeks. The NEB underwent a new expansion and contraction episode in 2016-17 with associated cyclone-anticyclone formation, which could explain why the mesoscale wave pattern was more vivid in 2017 than ever before.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astronomical Journal
Astronomical Journal 地学天文-天文与天体物理
CiteScore
8.40
自引率
24.50%
发文量
501
审稿时长
2-4 weeks
期刊介绍: The Astronomical Journal publishes original astronomical research, with an emphasis on significant scientific results derived from observations. Publications in AJ include descriptions of data capture, surveys, analysis techniques, astronomical interpretation, instrumentation, and software and computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信