基于图形化微器件的细胞器定位分析

Q3 Biochemistry, Genetics and Molecular Biology
Anahi Capmany, Bruno Latgé, Kristine Schauer
{"title":"基于图形化微器件的细胞器定位分析","authors":"Anahi Capmany,&nbsp;Bruno Latgé,&nbsp;Kristine Schauer","doi":"10.1002/cpcb.77","DOIUrl":null,"url":null,"abstract":"<p>The consequences of alterations in the distribution of intracellular organelles, observed in many diseases, are often not clear. Intracellular organelles alter their morphology and positioning to regulate cell homeostasis and function. We outline how organelle positioning can be studied employing a density-based analysis of 3D images applied to cells that show similar cellular geometries. Quantification is facilitated by the use of single cells seeded on micropatterned substrates that provide cues for controlled cell spreading. This minimal system mimics the reproducible distribution of organelles typically observed in tissues, simplifying image analysis and minimizing the number of cells required for the observation of robust phenotypes. Here we provide guidelines for how the majority of organelles can be efficiently analyzed in cells seeded on adhesive micropatterns. We exemplify how alterations in the positioning of different organelles as a result of the perturbation of the cytoskeleton or associated motor proteins can be efficiently quantified. © 2018 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":40051,"journal":{"name":"Current Protocols in Cell Biology","volume":"82 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpcb.77","citationCount":"3","resultStr":"{\"title\":\"Analysis of Organelle Positioning Using Patterned Microdevices\",\"authors\":\"Anahi Capmany,&nbsp;Bruno Latgé,&nbsp;Kristine Schauer\",\"doi\":\"10.1002/cpcb.77\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The consequences of alterations in the distribution of intracellular organelles, observed in many diseases, are often not clear. Intracellular organelles alter their morphology and positioning to regulate cell homeostasis and function. We outline how organelle positioning can be studied employing a density-based analysis of 3D images applied to cells that show similar cellular geometries. Quantification is facilitated by the use of single cells seeded on micropatterned substrates that provide cues for controlled cell spreading. This minimal system mimics the reproducible distribution of organelles typically observed in tissues, simplifying image analysis and minimizing the number of cells required for the observation of robust phenotypes. Here we provide guidelines for how the majority of organelles can be efficiently analyzed in cells seeded on adhesive micropatterns. We exemplify how alterations in the positioning of different organelles as a result of the perturbation of the cytoskeleton or associated motor proteins can be efficiently quantified. © 2018 by John Wiley &amp; Sons, Inc.</p>\",\"PeriodicalId\":40051,\"journal\":{\"name\":\"Current Protocols in Cell Biology\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cpcb.77\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Protocols in Cell Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpcb.77\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpcb.77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 3

摘要

在许多疾病中观察到的胞内细胞器分布改变的后果往往不清楚。胞内细胞器通过改变其形态和定位来调节细胞的稳态和功能。我们概述了如何利用基于密度的3D图像分析来研究细胞器定位,这些图像应用于显示相似细胞几何形状的细胞。通过使用单个细胞播种在微图案底物上,为控制细胞扩散提供线索,便于定量。这个最小的系统模拟了通常在组织中观察到的细胞器的可重复分布,简化了图像分析并最大限度地减少了观察稳健表型所需的细胞数量。在这里,我们提供了指导方针,如何大多数细胞器可以有效地分析细胞上的粘接微模式。我们举例说明了细胞骨架或相关运动蛋白的扰动如何导致不同细胞器定位的改变可以有效地量化。©2018 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Organelle Positioning Using Patterned Microdevices

The consequences of alterations in the distribution of intracellular organelles, observed in many diseases, are often not clear. Intracellular organelles alter their morphology and positioning to regulate cell homeostasis and function. We outline how organelle positioning can be studied employing a density-based analysis of 3D images applied to cells that show similar cellular geometries. Quantification is facilitated by the use of single cells seeded on micropatterned substrates that provide cues for controlled cell spreading. This minimal system mimics the reproducible distribution of organelles typically observed in tissues, simplifying image analysis and minimizing the number of cells required for the observation of robust phenotypes. Here we provide guidelines for how the majority of organelles can be efficiently analyzed in cells seeded on adhesive micropatterns. We exemplify how alterations in the positioning of different organelles as a result of the perturbation of the cytoskeleton or associated motor proteins can be efficiently quantified. © 2018 by John Wiley & Sons, Inc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Protocols in Cell Biology
Current Protocols in Cell Biology Biochemistry, Genetics and Molecular Biology-Cell Biology
自引率
0.00%
发文量
0
期刊介绍: Developed by leading scientists in the field, Current Protocols in Cell Biology is an essential reference for researchers who study the relationship between specific molecules and genes and their location, function and structure at the cellular level. Updated every three months in all formats, CPCB is constantly evolving to keep pace with the very latest discoveries and developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信