{"title":"五种结转模型的最佳和/或有效的两种处理交叉设计。","authors":"Jigneshkumar Gondaliya, Jyoti Divecha","doi":"10.1515/ijb-2018-0001","DOIUrl":null,"url":null,"abstract":"<p><p>Crossover designs robust to changes in carryover models are useful in clinical trials where the nature of carryover effects is not known in advance. The designs have been characterized for being optimal and efficient under no carryover-, traditional-, and, self and mixed carryover- models, however, ignoring the number of subjects, which has significant impact on both optimality and administrative convenience. In this article, adding two more practical models, the traditional, and, self and mixed carryover models having carryover effect only for the new or test treatment, a 5M algorithm is presented. The 5M algorithm based computer code searches all possible two treatment crossover designs under the five carryover models and list those which are optimal and /or efficient to all the five carryover models. The resultant exhaustive list consists of optimal and/or efficient crossover designs in two, three, and four periods, having 4 to 20 subjects of which 24 designs are new optimal for one of the established carryover models, and 34 designs are optimal for newly added models.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"14 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2018-0001","citationCount":"4","resultStr":"{\"title\":\"Optimal and/or Efficient Two treatment Crossover Designs for Five Carryover Models.\",\"authors\":\"Jigneshkumar Gondaliya, Jyoti Divecha\",\"doi\":\"10.1515/ijb-2018-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Crossover designs robust to changes in carryover models are useful in clinical trials where the nature of carryover effects is not known in advance. The designs have been characterized for being optimal and efficient under no carryover-, traditional-, and, self and mixed carryover- models, however, ignoring the number of subjects, which has significant impact on both optimality and administrative convenience. In this article, adding two more practical models, the traditional, and, self and mixed carryover models having carryover effect only for the new or test treatment, a 5M algorithm is presented. The 5M algorithm based computer code searches all possible two treatment crossover designs under the five carryover models and list those which are optimal and /or efficient to all the five carryover models. The resultant exhaustive list consists of optimal and/or efficient crossover designs in two, three, and four periods, having 4 to 20 subjects of which 24 designs are new optimal for one of the established carryover models, and 34 designs are optimal for newly added models.</p>\",\"PeriodicalId\":49058,\"journal\":{\"name\":\"International Journal of Biostatistics\",\"volume\":\"14 2\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2018-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/ijb-2018-0001\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2018-0001\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2018-0001","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Optimal and/or Efficient Two treatment Crossover Designs for Five Carryover Models.
Crossover designs robust to changes in carryover models are useful in clinical trials where the nature of carryover effects is not known in advance. The designs have been characterized for being optimal and efficient under no carryover-, traditional-, and, self and mixed carryover- models, however, ignoring the number of subjects, which has significant impact on both optimality and administrative convenience. In this article, adding two more practical models, the traditional, and, self and mixed carryover models having carryover effect only for the new or test treatment, a 5M algorithm is presented. The 5M algorithm based computer code searches all possible two treatment crossover designs under the five carryover models and list those which are optimal and /or efficient to all the five carryover models. The resultant exhaustive list consists of optimal and/or efficient crossover designs in two, three, and four periods, having 4 to 20 subjects of which 24 designs are new optimal for one of the established carryover models, and 34 designs are optimal for newly added models.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.