基于Fisher信息的主动深度学习补丁语义分割。

Jamshid Sourati, Ali Gholipour, Jennifer G Dy, Sila Kurugol, Simon K Warfield
{"title":"基于Fisher信息的主动深度学习补丁语义分割。","authors":"Jamshid Sourati,&nbsp;Ali Gholipour,&nbsp;Jennifer G Dy,&nbsp;Sila Kurugol,&nbsp;Simon K Warfield","doi":"10.1007/978-3-030-00889-5_10","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning with convolutional neural networks (CNN) has achieved unprecedented success in segmentation, however it requires large training data, which is expensive to obtain. Active Learning (AL) frameworks can facilitate major improvements in CNN performance with intelligent selection of minimal data to be labeled. This paper proposes a novel diversified AL based on Fisher information (FI) for the first time for CNNs, where gradient computations from backpropagation are used for efficient computation of FI on the large CNN parameter space. We evaluated the proposed method in the context of newborn and adolescent brain extraction problem under two scenarios: (1) semi-automatic segmentation of a particular subject from a different age group or with a pathology not available in the original training data, where starting from an inaccurate pre-trained model, we iteratively label small number of voxels queried by AL until the model generates accurate segmentation for that subject, and (2) using AL to build a universal model generalizable to all images in a given data set. In both scenarios, FI-based AL improved performance after labeling a small percentage (less than 0.05%) of voxels. The results showed that FI-based AL significantly outperformed random sampling, and achieved accuracy higher than entropy-based querying in transfer learning, where the model learns to extract brains of newborn subjects given an initial model trained on adolescents.</p>","PeriodicalId":92501,"journal":{"name":"Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support : 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, held in conjunction with MICCAI 2018, Granada, Spain, S...","volume":"11045 ","pages":"83-91"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-030-00889-5_10","citationCount":"29","resultStr":"{\"title\":\"Active Deep Learning with Fisher Information for Patch-wise Semantic Segmentation.\",\"authors\":\"Jamshid Sourati,&nbsp;Ali Gholipour,&nbsp;Jennifer G Dy,&nbsp;Sila Kurugol,&nbsp;Simon K Warfield\",\"doi\":\"10.1007/978-3-030-00889-5_10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deep learning with convolutional neural networks (CNN) has achieved unprecedented success in segmentation, however it requires large training data, which is expensive to obtain. Active Learning (AL) frameworks can facilitate major improvements in CNN performance with intelligent selection of minimal data to be labeled. This paper proposes a novel diversified AL based on Fisher information (FI) for the first time for CNNs, where gradient computations from backpropagation are used for efficient computation of FI on the large CNN parameter space. We evaluated the proposed method in the context of newborn and adolescent brain extraction problem under two scenarios: (1) semi-automatic segmentation of a particular subject from a different age group or with a pathology not available in the original training data, where starting from an inaccurate pre-trained model, we iteratively label small number of voxels queried by AL until the model generates accurate segmentation for that subject, and (2) using AL to build a universal model generalizable to all images in a given data set. In both scenarios, FI-based AL improved performance after labeling a small percentage (less than 0.05%) of voxels. The results showed that FI-based AL significantly outperformed random sampling, and achieved accuracy higher than entropy-based querying in transfer learning, where the model learns to extract brains of newborn subjects given an initial model trained on adolescents.</p>\",\"PeriodicalId\":92501,\"journal\":{\"name\":\"Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support : 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, held in conjunction with MICCAI 2018, Granada, Spain, S...\",\"volume\":\"11045 \",\"pages\":\"83-91\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-030-00889-5_10\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support : 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, held in conjunction with MICCAI 2018, Granada, Spain, S...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-030-00889-5_10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/9/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support : 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, held in conjunction with MICCAI 2018, Granada, Spain, S...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-00889-5_10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/9/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

卷积神经网络(CNN)的深度学习在分割方面取得了前所未有的成功,但它需要大量的训练数据,而训练数据的获取成本很高。主动学习(AL)框架可以通过智能选择要标记的最小数据来促进CNN性能的重大改进。本文首次针对CNN提出了一种新的基于Fisher信息(FI)的多样化人工智能,利用反向传播的梯度计算在CNN大参数空间上高效地计算FI。在新生儿和青少年大脑提取问题的背景下,我们在两种情况下评估了所提出的方法:(1)对原始训练数据中没有的不同年龄组或病理的特定受试者进行半自动分割,从一个不准确的预训练模型开始,我们迭代标记人工智能查询的少量体素,直到模型对该受试者产生准确的分割;(2)使用人工智能构建一个可推广到给定数据集中所有图像的通用模型。在这两种情况下,基于fi的人工智能在标记一小部分(小于0.05%)体素后提高了性能。结果表明,在迁移学习中,基于fi的人工智能显著优于随机抽样,且准确率高于基于熵的查询,在迁移学习中,模型学习提取针对青少年的初始模型的新生儿受试者的大脑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Active Deep Learning with Fisher Information for Patch-wise Semantic Segmentation.

Active Deep Learning with Fisher Information for Patch-wise Semantic Segmentation.

Active Deep Learning with Fisher Information for Patch-wise Semantic Segmentation.

Active Deep Learning with Fisher Information for Patch-wise Semantic Segmentation.

Deep learning with convolutional neural networks (CNN) has achieved unprecedented success in segmentation, however it requires large training data, which is expensive to obtain. Active Learning (AL) frameworks can facilitate major improvements in CNN performance with intelligent selection of minimal data to be labeled. This paper proposes a novel diversified AL based on Fisher information (FI) for the first time for CNNs, where gradient computations from backpropagation are used for efficient computation of FI on the large CNN parameter space. We evaluated the proposed method in the context of newborn and adolescent brain extraction problem under two scenarios: (1) semi-automatic segmentation of a particular subject from a different age group or with a pathology not available in the original training data, where starting from an inaccurate pre-trained model, we iteratively label small number of voxels queried by AL until the model generates accurate segmentation for that subject, and (2) using AL to build a universal model generalizable to all images in a given data set. In both scenarios, FI-based AL improved performance after labeling a small percentage (less than 0.05%) of voxels. The results showed that FI-based AL significantly outperformed random sampling, and achieved accuracy higher than entropy-based querying in transfer learning, where the model learns to extract brains of newborn subjects given an initial model trained on adolescents.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信