{"title":"miR-124的表观遗传启动子DNA甲基化参与hiv -1相关神经认知障碍的发病机制","authors":"Shilpa Buch, Palsamy Periyasamy, Minglei Guo","doi":"10.1177/2516865718806904","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the efficacy of combination antiretroviral therapy (cART) in controlling viremia, the central nervous system (CNS) continues to harbor viral reservoirs. The persistence of low-level virus replication leads to the accumulation of early viral proteins, including HIV-1 Transactivator of transcription (HIV-1 Tat) protein. Based on the premise that cART does not impact levels of HIV-1 Tat, and since the CNS is inaccessible to the cART regimens, HIV-1-Tat-mediated neuroinflammation has been implicated as an underlying mediator of HIV-1-associated neurocognitive disorders (HAND). The mechanism(s) underlying the pathogenesis of HAND, however, remain less understood. Understanding the epigenetic/molecular mechanism(s) by which viral proteins such as HIV-1 Tat activate microglia is thus of paramount importance. The study published by Periyasamy et al provides new mechanistic insights into the role of HIV-1-Tat-mediated DNA methylation of miR-124 promoter in regulating microglial activation via the MECP2-STAT3 signaling axis. Furthermore, the authors have also reported that exposure of mouse primary microglial cells to HIV-1 Tat notably increased DNA methylation of primary miR-124-1 and primary miR-124-2 promoters (with no change in primary miR-124-3), resulting in turn to downregulated expression of both primary miR-124-1 and primary miR-124-2 as well as mature miR-124 in mouse primary microglial cells. The authors also examined the involvement of MECP2-STAT3 signaling in HIV-1-Tat-mediated microglial activation. Based on these novel findings, it is evident that dysregulation of miR-124 is involved in the pathogenesis of HAND and that restoration of miR-124 could serve as an adjunctive treatment for dampening neuroinflammation associated with HAND.</p>","PeriodicalId":41996,"journal":{"name":"Epigenetics Insights","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2018-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2516865718806904","citationCount":"4","resultStr":"{\"title\":\"Involvement of Epigenetic Promoter DNA Methylation of miR-124 in the Pathogenesis of HIV-1-Associated Neurocognitive Disorders.\",\"authors\":\"Shilpa Buch, Palsamy Periyasamy, Minglei Guo\",\"doi\":\"10.1177/2516865718806904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite the efficacy of combination antiretroviral therapy (cART) in controlling viremia, the central nervous system (CNS) continues to harbor viral reservoirs. The persistence of low-level virus replication leads to the accumulation of early viral proteins, including HIV-1 Transactivator of transcription (HIV-1 Tat) protein. Based on the premise that cART does not impact levels of HIV-1 Tat, and since the CNS is inaccessible to the cART regimens, HIV-1-Tat-mediated neuroinflammation has been implicated as an underlying mediator of HIV-1-associated neurocognitive disorders (HAND). The mechanism(s) underlying the pathogenesis of HAND, however, remain less understood. Understanding the epigenetic/molecular mechanism(s) by which viral proteins such as HIV-1 Tat activate microglia is thus of paramount importance. The study published by Periyasamy et al provides new mechanistic insights into the role of HIV-1-Tat-mediated DNA methylation of miR-124 promoter in regulating microglial activation via the MECP2-STAT3 signaling axis. Furthermore, the authors have also reported that exposure of mouse primary microglial cells to HIV-1 Tat notably increased DNA methylation of primary miR-124-1 and primary miR-124-2 promoters (with no change in primary miR-124-3), resulting in turn to downregulated expression of both primary miR-124-1 and primary miR-124-2 as well as mature miR-124 in mouse primary microglial cells. The authors also examined the involvement of MECP2-STAT3 signaling in HIV-1-Tat-mediated microglial activation. Based on these novel findings, it is evident that dysregulation of miR-124 is involved in the pathogenesis of HAND and that restoration of miR-124 could serve as an adjunctive treatment for dampening neuroinflammation associated with HAND.</p>\",\"PeriodicalId\":41996,\"journal\":{\"name\":\"Epigenetics Insights\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2018-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/2516865718806904\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epigenetics Insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2516865718806904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2516865718806904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Involvement of Epigenetic Promoter DNA Methylation of miR-124 in the Pathogenesis of HIV-1-Associated Neurocognitive Disorders.
Despite the efficacy of combination antiretroviral therapy (cART) in controlling viremia, the central nervous system (CNS) continues to harbor viral reservoirs. The persistence of low-level virus replication leads to the accumulation of early viral proteins, including HIV-1 Transactivator of transcription (HIV-1 Tat) protein. Based on the premise that cART does not impact levels of HIV-1 Tat, and since the CNS is inaccessible to the cART regimens, HIV-1-Tat-mediated neuroinflammation has been implicated as an underlying mediator of HIV-1-associated neurocognitive disorders (HAND). The mechanism(s) underlying the pathogenesis of HAND, however, remain less understood. Understanding the epigenetic/molecular mechanism(s) by which viral proteins such as HIV-1 Tat activate microglia is thus of paramount importance. The study published by Periyasamy et al provides new mechanistic insights into the role of HIV-1-Tat-mediated DNA methylation of miR-124 promoter in regulating microglial activation via the MECP2-STAT3 signaling axis. Furthermore, the authors have also reported that exposure of mouse primary microglial cells to HIV-1 Tat notably increased DNA methylation of primary miR-124-1 and primary miR-124-2 promoters (with no change in primary miR-124-3), resulting in turn to downregulated expression of both primary miR-124-1 and primary miR-124-2 as well as mature miR-124 in mouse primary microglial cells. The authors also examined the involvement of MECP2-STAT3 signaling in HIV-1-Tat-mediated microglial activation. Based on these novel findings, it is evident that dysregulation of miR-124 is involved in the pathogenesis of HAND and that restoration of miR-124 could serve as an adjunctive treatment for dampening neuroinflammation associated with HAND.