Konstantin E Avrachenkov, Aleksei Y Kondratev, Vladimir V Mazalov, Dmytro G Rubanov
{"title":"合作博弈中的网络划分算法。","authors":"Konstantin E Avrachenkov, Aleksei Y Kondratev, Vladimir V Mazalov, Dmytro G Rubanov","doi":"10.1186/s40649-018-0059-5","DOIUrl":null,"url":null,"abstract":"<p><p>The paper is devoted to game-theoretic methods for community detection in networks. The traditional methods for detecting community structure are based on selecting dense subgraphs inside the network. Here we propose to use the methods of cooperative game theory that highlight not only the link density but also the mechanisms of cluster formation. Specifically, we suggest two approaches from cooperative game theory: the first approach is based on the Myerson value, whereas the second approach is based on hedonic games. Both approaches allow to detect clusters with various resolutions. However, the tuning of the resolution parameter in the hedonic games approach is particularly intuitive. Furthermore, the modularity-based approach and its generalizations as well as ratio cut and normalized cut methods can be viewed as particular cases of the hedonic games. Finally, for approaches based on potential hedonic games we suggest a very efficient computational scheme using Gibbs sampling.</p>","PeriodicalId":52145,"journal":{"name":"Computational Social Networks","volume":"5 1","pages":"11"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40649-018-0059-5","citationCount":"10","resultStr":"{\"title\":\"Network partitioning algorithms as cooperative games.\",\"authors\":\"Konstantin E Avrachenkov, Aleksei Y Kondratev, Vladimir V Mazalov, Dmytro G Rubanov\",\"doi\":\"10.1186/s40649-018-0059-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The paper is devoted to game-theoretic methods for community detection in networks. The traditional methods for detecting community structure are based on selecting dense subgraphs inside the network. Here we propose to use the methods of cooperative game theory that highlight not only the link density but also the mechanisms of cluster formation. Specifically, we suggest two approaches from cooperative game theory: the first approach is based on the Myerson value, whereas the second approach is based on hedonic games. Both approaches allow to detect clusters with various resolutions. However, the tuning of the resolution parameter in the hedonic games approach is particularly intuitive. Furthermore, the modularity-based approach and its generalizations as well as ratio cut and normalized cut methods can be viewed as particular cases of the hedonic games. Finally, for approaches based on potential hedonic games we suggest a very efficient computational scheme using Gibbs sampling.</p>\",\"PeriodicalId\":52145,\"journal\":{\"name\":\"Computational Social Networks\",\"volume\":\"5 1\",\"pages\":\"11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40649-018-0059-5\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Social Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40649-018-0059-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/10/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40649-018-0059-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/10/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Network partitioning algorithms as cooperative games.
The paper is devoted to game-theoretic methods for community detection in networks. The traditional methods for detecting community structure are based on selecting dense subgraphs inside the network. Here we propose to use the methods of cooperative game theory that highlight not only the link density but also the mechanisms of cluster formation. Specifically, we suggest two approaches from cooperative game theory: the first approach is based on the Myerson value, whereas the second approach is based on hedonic games. Both approaches allow to detect clusters with various resolutions. However, the tuning of the resolution parameter in the hedonic games approach is particularly intuitive. Furthermore, the modularity-based approach and its generalizations as well as ratio cut and normalized cut methods can be viewed as particular cases of the hedonic games. Finally, for approaches based on potential hedonic games we suggest a very efficient computational scheme using Gibbs sampling.
期刊介绍:
Computational Social Networks showcases refereed papers dealing with all mathematical, computational and applied aspects of social computing. The objective of this journal is to advance and promote the theoretical foundation, mathematical aspects, and applications of social computing. Submissions are welcome which focus on common principles, algorithms and tools that govern network structures/topologies, network functionalities, security and privacy, network behaviors, information diffusions and influence, social recommendation systems which are applicable to all types of social networks and social media. Topics include (but are not limited to) the following: -Social network design and architecture -Mathematical modeling and analysis -Real-world complex networks -Information retrieval in social contexts, political analysts -Network structure analysis -Network dynamics optimization -Complex network robustness and vulnerability -Information diffusion models and analysis -Security and privacy -Searching in complex networks -Efficient algorithms -Network behaviors -Trust and reputation -Social Influence -Social Recommendation -Social media analysis -Big data analysis on online social networks This journal publishes rigorously refereed papers dealing with all mathematical, computational and applied aspects of social computing. The journal also includes reviews of appropriate books as special issues on hot topics.