目标特异性毒性知识库(TsTKb):一个新的工具箱,在计算机预测毒理学。

Q2 Biochemistry, Genetics and Molecular Biology
Yan Li, Gabriel Idakwo, Sundar Thangapandian, Minjun Chen, Huixiao Hong, Chaoyang Zhang, Ping Gong
{"title":"目标特异性毒性知识库(TsTKb):一个新的工具箱,在计算机预测毒理学。","authors":"Yan Li,&nbsp;Gabriel Idakwo,&nbsp;Sundar Thangapandian,&nbsp;Minjun Chen,&nbsp;Huixiao Hong,&nbsp;Chaoyang Zhang,&nbsp;Ping Gong","doi":"10.1080/10590501.2018.1537148","DOIUrl":null,"url":null,"abstract":"<p><p>As the number of man-made chemicals increases at an unprecedented pace, efforts of quickly screening and accurately evaluating their potential adverse biological effects have been hampered by prohibitively high costs of in vivo/vitro toxicity testing. While it is unrealistic and unnecessary to test every uncharacterized chemical, it remains a major challenge to develop alternative in silico tools with high reliability and precision in toxicity prediction. To address this urgent need, we have developed a novel mode-of-action-guided, molecular modeling-based, and machine learning-enabled modeling approach for in silico chemical toxicity prediction. Here we introduce the core element of this approach, Target-specific Toxicity Knowledgebase (TsTKb), which consists of two main components: Chemical Mode of Action (ChemMoA) database and a suite of prediction model libraries.</p>","PeriodicalId":51085,"journal":{"name":"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews","volume":"36 4","pages":"219-236"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10590501.2018.1537148","citationCount":"4","resultStr":"{\"title\":\"Target-specific toxicity knowledgebase (TsTKb): a novel toolkit for in silico predictive toxicology.\",\"authors\":\"Yan Li,&nbsp;Gabriel Idakwo,&nbsp;Sundar Thangapandian,&nbsp;Minjun Chen,&nbsp;Huixiao Hong,&nbsp;Chaoyang Zhang,&nbsp;Ping Gong\",\"doi\":\"10.1080/10590501.2018.1537148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As the number of man-made chemicals increases at an unprecedented pace, efforts of quickly screening and accurately evaluating their potential adverse biological effects have been hampered by prohibitively high costs of in vivo/vitro toxicity testing. While it is unrealistic and unnecessary to test every uncharacterized chemical, it remains a major challenge to develop alternative in silico tools with high reliability and precision in toxicity prediction. To address this urgent need, we have developed a novel mode-of-action-guided, molecular modeling-based, and machine learning-enabled modeling approach for in silico chemical toxicity prediction. Here we introduce the core element of this approach, Target-specific Toxicity Knowledgebase (TsTKb), which consists of two main components: Chemical Mode of Action (ChemMoA) database and a suite of prediction model libraries.</p>\",\"PeriodicalId\":51085,\"journal\":{\"name\":\"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews\",\"volume\":\"36 4\",\"pages\":\"219-236\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10590501.2018.1537148\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10590501.2018.1537148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/11/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10590501.2018.1537148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/11/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 4

摘要

随着人造化学品数量以前所未有的速度增长,快速筛选和准确评估其潜在不利生物效应的努力受到体内/体外毒性测试成本过高的阻碍。虽然测试每一种未表征的化学物质是不现实和不必要的,但开发具有高可靠性和精度的毒性预测替代硅工具仍然是一个重大挑战。为了满足这一迫切需求,我们开发了一种新的以作用模式为导向、基于分子模型和机器学习的建模方法,用于硅化学毒性预测。在这里,我们介绍了这种方法的核心要素,目标特异性毒性知识库(TsTKb),它由两个主要组成部分组成:化学作用模式(ChemMoA)数据库和一套预测模型库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Target-specific toxicity knowledgebase (TsTKb): a novel toolkit for in silico predictive toxicology.

As the number of man-made chemicals increases at an unprecedented pace, efforts of quickly screening and accurately evaluating their potential adverse biological effects have been hampered by prohibitively high costs of in vivo/vitro toxicity testing. While it is unrealistic and unnecessary to test every uncharacterized chemical, it remains a major challenge to develop alternative in silico tools with high reliability and precision in toxicity prediction. To address this urgent need, we have developed a novel mode-of-action-guided, molecular modeling-based, and machine learning-enabled modeling approach for in silico chemical toxicity prediction. Here we introduce the core element of this approach, Target-specific Toxicity Knowledgebase (TsTKb), which consists of two main components: Chemical Mode of Action (ChemMoA) database and a suite of prediction model libraries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
0
审稿时长
>24 weeks
期刊介绍: Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews aims at rapid publication of reviews on important subjects in various areas of environmental toxicology, health and carcinogenesis. Among the subjects covered are risk assessments of chemicals including nanomaterials and physical agents of environmental significance, harmful organisms found in the environment and toxic agents they produce, and food and drugs as environmental factors. It includes basic research, methodology, host susceptibility, mechanistic studies, theoretical modeling, environmental and geotechnical engineering, and environmental protection. Submission to this journal is primarily on an invitational basis. All submissions should be made through the Editorial Manager site, and are subject to peer review by independent, anonymous expert referees. Please review the instructions for authors for manuscript submission guidance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信