基于超像素的高效食品图像分割分析。

Yu Wang, Chang Liu, Fengqing Zhu, Carol J Boushey, Edward J Delp
{"title":"基于超像素的高效食品图像分割分析。","authors":"Yu Wang,&nbsp;Chang Liu,&nbsp;Fengqing Zhu,&nbsp;Carol J Boushey,&nbsp;Edward J Delp","doi":"10.1109/ICIP.2016.7532818","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we propose a segmentation method based on normalized cut and superpixels. The method relies on color and texture cues for fast computation and efficient use of memory. The method is used for food image segmentation as part of a mobile food record system we have developed for dietary assessment and management. The accurate estimate of nutrients relies on correctly labelled food items and sufficiently well-segmented regions. Our method achieves competitive results using the Berkeley Segmentation Dataset and outperforms some of the most popular techniques in a food image dataset.</p>","PeriodicalId":74572,"journal":{"name":"Proceedings. International Conference on Image Processing","volume":"2016 ","pages":"2544-2548"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ICIP.2016.7532818","citationCount":"15","resultStr":"{\"title\":\"EFFICIENT SUPERPIXEL BASED SEGMENTATION FOR FOOD IMAGE ANALYSIS.\",\"authors\":\"Yu Wang,&nbsp;Chang Liu,&nbsp;Fengqing Zhu,&nbsp;Carol J Boushey,&nbsp;Edward J Delp\",\"doi\":\"10.1109/ICIP.2016.7532818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we propose a segmentation method based on normalized cut and superpixels. The method relies on color and texture cues for fast computation and efficient use of memory. The method is used for food image segmentation as part of a mobile food record system we have developed for dietary assessment and management. The accurate estimate of nutrients relies on correctly labelled food items and sufficiently well-segmented regions. Our method achieves competitive results using the Berkeley Segmentation Dataset and outperforms some of the most popular techniques in a food image dataset.</p>\",\"PeriodicalId\":74572,\"journal\":{\"name\":\"Proceedings. International Conference on Image Processing\",\"volume\":\"2016 \",\"pages\":\"2544-2548\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/ICIP.2016.7532818\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2016.7532818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/12/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/12/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文提出了一种基于归一化切割和超像素的图像分割方法。该方法依靠颜色和纹理线索来快速计算和有效利用内存。该方法用于食品图像分割,作为我们开发的用于膳食评估和管理的移动食品记录系统的一部分。对营养成分的准确估计依赖于正确标记的食品和充分分割的区域。我们的方法使用伯克利分割数据集获得了具有竞争力的结果,并且优于食品图像数据集中一些最流行的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

EFFICIENT SUPERPIXEL BASED SEGMENTATION FOR FOOD IMAGE ANALYSIS.

EFFICIENT SUPERPIXEL BASED SEGMENTATION FOR FOOD IMAGE ANALYSIS.

EFFICIENT SUPERPIXEL BASED SEGMENTATION FOR FOOD IMAGE ANALYSIS.

EFFICIENT SUPERPIXEL BASED SEGMENTATION FOR FOOD IMAGE ANALYSIS.

In this paper, we propose a segmentation method based on normalized cut and superpixels. The method relies on color and texture cues for fast computation and efficient use of memory. The method is used for food image segmentation as part of a mobile food record system we have developed for dietary assessment and management. The accurate estimate of nutrients relies on correctly labelled food items and sufficiently well-segmented regions. Our method achieves competitive results using the Berkeley Segmentation Dataset and outperforms some of the most popular techniques in a food image dataset.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信