{"title":"数制高于顺序。","authors":"Attila Pethő, Jörg Thuswaldner","doi":"10.1007/s00605-018-1191-x","DOIUrl":null,"url":null,"abstract":"<p><p>Let <math><mi>K</mi></math> be a number field of degree <i>k</i> and let <math><mi>O</mi></math> be an order in <math><mi>K</mi></math> . A <i>generalized number system over</i> <math><mi>O</mi></math> (GNS for short) is a pair <math><mrow><mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>D</mi> <mo>)</mo></mrow> </math> where <math><mrow><mi>p</mi> <mo>∈</mo> <mi>O</mi> <mo>[</mo> <mi>x</mi> <mo>]</mo></mrow> </math> is monic and <math><mrow><mi>D</mi> <mo>⊂</mo> <mi>O</mi></mrow> </math> is a complete residue system modulo <i>p</i>(0) containing 0. If each <math><mrow><mi>a</mi> <mo>∈</mo> <mi>O</mi> <mo>[</mo> <mi>x</mi> <mo>]</mo></mrow> </math> admits a representation of the form <math><mrow><mi>a</mi> <mo>≡</mo> <msubsup><mo>∑</mo> <mrow><mi>j</mi> <mo>=</mo> <mn>0</mn></mrow> <mrow><mi>ℓ</mi> <mo>-</mo> <mn>1</mn></mrow> </msubsup> <msub><mi>d</mi> <mi>j</mi></msub> <msup><mi>x</mi> <mi>j</mi></msup> <mspace></mspace> <mrow><mo>(</mo> <mo>mod</mo> <mspace></mspace> <mi>p</mi> <mo>)</mo></mrow> </mrow> </math> with <math><mrow><mi>ℓ</mi> <mo>∈</mo> <mi>N</mi></mrow> </math> and <math> <mrow><msub><mi>d</mi> <mn>0</mn></msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub><mi>d</mi> <mrow><mi>ℓ</mi> <mo>-</mo> <mn>1</mn></mrow> </msub> <mo>∈</mo> <mi>D</mi></mrow> </math> then the GNS <math><mrow><mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>D</mi> <mo>)</mo></mrow> </math> is said to have the <i>finiteness property</i>. To a given fundamental domain <math><mi>F</mi></math> of the action of <math> <msup><mrow><mi>Z</mi></mrow> <mi>k</mi></msup> </math> on <math> <msup><mrow><mi>R</mi></mrow> <mi>k</mi></msup> </math> we associate a class <math> <mrow><msub><mi>G</mi> <mi>F</mi></msub> <mo>:</mo> <mo>=</mo> <mrow><mo>{</mo> <mrow><mo>(</mo> <mi>p</mi> <mo>,</mo> <msub><mi>D</mi> <mi>F</mi></msub> <mo>)</mo></mrow> <mspace></mspace> <mo>:</mo> <mspace></mspace> <mi>p</mi> <mo>∈</mo> <mi>O</mi> <mrow><mo>[</mo> <mi>x</mi> <mo>]</mo></mrow> <mo>}</mo></mrow> </mrow> </math> of GNS whose digit sets <math><msub><mi>D</mi> <mi>F</mi></msub> </math> are defined in terms of <math><mi>F</mi></math> in a natural way. We are able to prove general results on the finiteness property of GNS in <math><msub><mi>G</mi> <mi>F</mi></msub> </math> by giving an abstract version of the well-known \"dominant condition\" on the absolute coefficient <i>p</i>(0) of <i>p</i>. In particular, depending on mild conditions on the topology of <math><mi>F</mi></math> we characterize the finiteness property of <math><mrow><mo>(</mo> <mi>p</mi> <mrow><mo>(</mo> <mi>x</mi> <mo>±</mo> <mi>m</mi> <mo>)</mo></mrow> <mo>,</mo> <msub><mi>D</mi> <mi>F</mi></msub> <mo>)</mo></mrow> </math> for fixed <i>p</i> and large <math><mrow><mi>m</mi> <mo>∈</mo> <mi>N</mi></mrow> </math> . Using our new theory, we are able to give general results on the connection between power integral bases of number fields and GNS.</p>","PeriodicalId":54737,"journal":{"name":"Monatshefte fur Mathematik","volume":"187 4","pages":"681-704"},"PeriodicalIF":0.8000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00605-018-1191-x","citationCount":"8","resultStr":"{\"title\":\"Number systems over orders.\",\"authors\":\"Attila Pethő, Jörg Thuswaldner\",\"doi\":\"10.1007/s00605-018-1191-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Let <math><mi>K</mi></math> be a number field of degree <i>k</i> and let <math><mi>O</mi></math> be an order in <math><mi>K</mi></math> . A <i>generalized number system over</i> <math><mi>O</mi></math> (GNS for short) is a pair <math><mrow><mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>D</mi> <mo>)</mo></mrow> </math> where <math><mrow><mi>p</mi> <mo>∈</mo> <mi>O</mi> <mo>[</mo> <mi>x</mi> <mo>]</mo></mrow> </math> is monic and <math><mrow><mi>D</mi> <mo>⊂</mo> <mi>O</mi></mrow> </math> is a complete residue system modulo <i>p</i>(0) containing 0. If each <math><mrow><mi>a</mi> <mo>∈</mo> <mi>O</mi> <mo>[</mo> <mi>x</mi> <mo>]</mo></mrow> </math> admits a representation of the form <math><mrow><mi>a</mi> <mo>≡</mo> <msubsup><mo>∑</mo> <mrow><mi>j</mi> <mo>=</mo> <mn>0</mn></mrow> <mrow><mi>ℓ</mi> <mo>-</mo> <mn>1</mn></mrow> </msubsup> <msub><mi>d</mi> <mi>j</mi></msub> <msup><mi>x</mi> <mi>j</mi></msup> <mspace></mspace> <mrow><mo>(</mo> <mo>mod</mo> <mspace></mspace> <mi>p</mi> <mo>)</mo></mrow> </mrow> </math> with <math><mrow><mi>ℓ</mi> <mo>∈</mo> <mi>N</mi></mrow> </math> and <math> <mrow><msub><mi>d</mi> <mn>0</mn></msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub><mi>d</mi> <mrow><mi>ℓ</mi> <mo>-</mo> <mn>1</mn></mrow> </msub> <mo>∈</mo> <mi>D</mi></mrow> </math> then the GNS <math><mrow><mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>D</mi> <mo>)</mo></mrow> </math> is said to have the <i>finiteness property</i>. To a given fundamental domain <math><mi>F</mi></math> of the action of <math> <msup><mrow><mi>Z</mi></mrow> <mi>k</mi></msup> </math> on <math> <msup><mrow><mi>R</mi></mrow> <mi>k</mi></msup> </math> we associate a class <math> <mrow><msub><mi>G</mi> <mi>F</mi></msub> <mo>:</mo> <mo>=</mo> <mrow><mo>{</mo> <mrow><mo>(</mo> <mi>p</mi> <mo>,</mo> <msub><mi>D</mi> <mi>F</mi></msub> <mo>)</mo></mrow> <mspace></mspace> <mo>:</mo> <mspace></mspace> <mi>p</mi> <mo>∈</mo> <mi>O</mi> <mrow><mo>[</mo> <mi>x</mi> <mo>]</mo></mrow> <mo>}</mo></mrow> </mrow> </math> of GNS whose digit sets <math><msub><mi>D</mi> <mi>F</mi></msub> </math> are defined in terms of <math><mi>F</mi></math> in a natural way. We are able to prove general results on the finiteness property of GNS in <math><msub><mi>G</mi> <mi>F</mi></msub> </math> by giving an abstract version of the well-known \\\"dominant condition\\\" on the absolute coefficient <i>p</i>(0) of <i>p</i>. In particular, depending on mild conditions on the topology of <math><mi>F</mi></math> we characterize the finiteness property of <math><mrow><mo>(</mo> <mi>p</mi> <mrow><mo>(</mo> <mi>x</mi> <mo>±</mo> <mi>m</mi> <mo>)</mo></mrow> <mo>,</mo> <msub><mi>D</mi> <mi>F</mi></msub> <mo>)</mo></mrow> </math> for fixed <i>p</i> and large <math><mrow><mi>m</mi> <mo>∈</mo> <mi>N</mi></mrow> </math> . Using our new theory, we are able to give general results on the connection between power integral bases of number fields and GNS.</p>\",\"PeriodicalId\":54737,\"journal\":{\"name\":\"Monatshefte fur Mathematik\",\"volume\":\"187 4\",\"pages\":\"681-704\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00605-018-1191-x\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monatshefte fur Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-018-1191-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/5/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte fur Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00605-018-1191-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/5/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8
摘要
设K是K次的数字域设O是K的一个阶。O上的广义数系统(简称GNS)是一对(p, D),其中p∈O [x]是单调的,D∧O是模p(0)中包含0的完全剩数系统。如果每个a∈O [x]允许a≡∑j = 0 r - 1 d j x j (mod p),其中r∈N, d 0,…,d r r - 1∈d,则GNS (p, d)具有有限性。对于给定的zk作用于rk的基本定义域F,我们联想到一类GNS的G F: = {(p, df): p∈O [x]},其数字集df是用F以自然的方式定义的。通过给出关于p的绝对系数p(0)的众所周知的“优势条件”的抽象版本,我们能够证明gf中GNS有限性质的一般结果。特别是,根据F拓扑的温和条件,我们表征了(p(x±m), df)对于固定p和大m∈N的有限性质。利用我们的新理论,我们能够给出关于数域的幂积分基与GNS之间联系的一般结果。
Let be a number field of degree k and let be an order in . A generalized number system over (GNS for short) is a pair where is monic and is a complete residue system modulo p(0) containing 0. If each admits a representation of the form with and then the GNS is said to have the finiteness property. To a given fundamental domain of the action of on we associate a class of GNS whose digit sets are defined in terms of in a natural way. We are able to prove general results on the finiteness property of GNS in by giving an abstract version of the well-known "dominant condition" on the absolute coefficient p(0) of p. In particular, depending on mild conditions on the topology of we characterize the finiteness property of for fixed p and large . Using our new theory, we are able to give general results on the connection between power integral bases of number fields and GNS.
期刊介绍:
The journal was founded in 1890 by G. v. Escherich and E. Weyr as "Monatshefte für Mathematik und Physik" and appeared with this title until 1944. Continued from 1948 on as "Monatshefte für Mathematik", its managing editors were L. Gegenbauer, F. Mertens, W. Wirtinger, H. Hahn, Ph. Furtwängler, J. Radon, K. Mayrhofer, N. Hofreiter, H. Reiter, K. Sigmund, J. Cigler.
The journal is devoted to research in mathematics in its broadest sense. Over the years, it has attracted a remarkable cast of authors, ranging from G. Peano, and A. Tauber to P. Erdös and B. L. van der Waerden. The volumes of the Monatshefte contain historical achievements in analysis (L. Bieberbach, H. Hahn, E. Helly, R. Nevanlinna, J. Radon, F. Riesz, W. Wirtinger), topology (K. Menger, K. Kuratowski, L. Vietoris, K. Reidemeister), and number theory (F. Mertens, Ph. Furtwängler, E. Hlawka, E. Landau). It also published landmark contributions by physicists such as M. Planck and W. Heisenberg and by philosophers such as R. Carnap and F. Waismann. In particular, the journal played a seminal role in analyzing the foundations of mathematics (L. E. J. Brouwer, A. Tarski and K. Gödel).
The journal publishes research papers of general interest in all areas of mathematics. Surveys of significant developments in the fields of pure and applied mathematics and mathematical physics may be occasionally included.