λ-Bernstein-Kantorovich型二元张量积的G -B - S算子的混合型逼近。

IF 1.6 3区 数学 Q1 Mathematics
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-10-01 DOI:10.1186/s13660-018-1862-0
Qing-Bo Cai, Guorong Zhou
{"title":"λ-Bernstein-Kantorovich型二元张量积的G -B - S算子的混合型逼近。","authors":"Qing-Bo Cai,&nbsp;Guorong Zhou","doi":"10.1186/s13660-018-1862-0","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we introduce a family of <math><mi>G</mi> <mi>B</mi> <mi>S</mi></math> operators of bivariate tensor product of <i>λ</i>-Bernstein-Kantorovich type. We estimate the rate of convergence of such operators for <i>B</i>-continuous and <i>B</i>-differentiable functions by using the mixed modulus of smoothness, establish the Voronovskaja type asymptotic formula for the bivariate <i>λ</i>-Bernstein-Kantorovich operators, as well as give some examples and their graphs to show the effect of convergence.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"268"},"PeriodicalIF":1.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1862-0","citationCount":"9","resultStr":"{\"title\":\"<ArticleTitle xmlns:ns0=\\\"http://www.w3.org/1998/Math/MathML\\\">Blending type approximation by <ns0:math><ns0:mi>G</ns0:mi> <ns0:mi>B</ns0:mi> <ns0:mi>S</ns0:mi></ns0:math> operators of bivariate tensor product of <i>λ</i>-Bernstein-Kantorovich type.\",\"authors\":\"Qing-Bo Cai,&nbsp;Guorong Zhou\",\"doi\":\"10.1186/s13660-018-1862-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we introduce a family of <math><mi>G</mi> <mi>B</mi> <mi>S</mi></math> operators of bivariate tensor product of <i>λ</i>-Bernstein-Kantorovich type. We estimate the rate of convergence of such operators for <i>B</i>-continuous and <i>B</i>-differentiable functions by using the mixed modulus of smoothness, establish the Voronovskaja type asymptotic formula for the bivariate <i>λ</i>-Bernstein-Kantorovich operators, as well as give some examples and their graphs to show the effect of convergence.</p>\",\"PeriodicalId\":49163,\"journal\":{\"name\":\"Journal of Inequalities and Applications\",\"volume\":\"2018 1\",\"pages\":\"268\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13660-018-1862-0\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inequalities and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13660-018-1862-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/10/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-018-1862-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/10/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 9

摘要

本文引入了λ-Bernstein-Kantorovich型二元张量积的G B S算子族。利用光滑的混合模估计了b -连续函数和b -可微函数的这类算子的收敛速度,建立了二元λ-Bernstein-Kantorovich算子的Voronovskaja型渐近公式,并给出了一些例子和图来说明收敛效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

<ArticleTitle xmlns:ns0="http://www.w3.org/1998/Math/MathML">Blending type approximation by <ns0:math><ns0:mi>G</ns0:mi> <ns0:mi>B</ns0:mi> <ns0:mi>S</ns0:mi></ns0:math> operators of bivariate tensor product of <i>λ</i>-Bernstein-Kantorovich type.

<ArticleTitle xmlns:ns0="http://www.w3.org/1998/Math/MathML">Blending type approximation by <ns0:math><ns0:mi>G</ns0:mi> <ns0:mi>B</ns0:mi> <ns0:mi>S</ns0:mi></ns0:math> operators of bivariate tensor product of <i>λ</i>-Bernstein-Kantorovich type.

<ArticleTitle xmlns:ns0="http://www.w3.org/1998/Math/MathML">Blending type approximation by <ns0:math><ns0:mi>G</ns0:mi> <ns0:mi>B</ns0:mi> <ns0:mi>S</ns0:mi></ns0:math> operators of bivariate tensor product of <i>λ</i>-Bernstein-Kantorovich type.

Blending type approximation by G B S operators of bivariate tensor product of λ-Bernstein-Kantorovich type.

In this paper, we introduce a family of G B S operators of bivariate tensor product of λ-Bernstein-Kantorovich type. We estimate the rate of convergence of such operators for B-continuous and B-differentiable functions by using the mixed modulus of smoothness, establish the Voronovskaja type asymptotic formula for the bivariate λ-Bernstein-Kantorovich operators, as well as give some examples and their graphs to show the effect of convergence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Inequalities and Applications
Journal of Inequalities and Applications MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.30
自引率
6.20%
发文量
136
审稿时长
3 months
期刊介绍: The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信