{"title":"保持同余函数的环。","authors":"C J Maxson, Frederik Saxinger","doi":"10.1007/s00605-017-1105-3","DOIUrl":null,"url":null,"abstract":"<p><p>Let <math> <mrow><msub><mi>C</mi> <mn>0</mn></msub> <mrow><mo>(</mo> <mi>G</mi> <mo>)</mo></mrow> </mrow> </math> denote the near-ring of congruence preserving functions of the group <i>G</i>. We investigate the question \"When is <math> <mrow><msub><mi>C</mi> <mn>0</mn></msub> <mrow><mo>(</mo> <mi>G</mi> <mo>)</mo></mrow> </mrow> </math> a ring?\". We obtain information externally via the lattice structure of the normal subgroups of <i>G</i> and internally via structural properties of the group <i>G</i>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00605-017-1105-3","citationCount":"2","resultStr":"{\"title\":\"Rings of congruence preserving functions.\",\"authors\":\"C J Maxson, Frederik Saxinger\",\"doi\":\"10.1007/s00605-017-1105-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Let <math> <mrow><msub><mi>C</mi> <mn>0</mn></msub> <mrow><mo>(</mo> <mi>G</mi> <mo>)</mo></mrow> </mrow> </math> denote the near-ring of congruence preserving functions of the group <i>G</i>. We investigate the question \\\"When is <math> <mrow><msub><mi>C</mi> <mn>0</mn></msub> <mrow><mo>(</mo> <mi>G</mi> <mo>)</mo></mrow> </mrow> </math> a ring?\\\". We obtain information externally via the lattice structure of the normal subgroups of <i>G</i> and internally via structural properties of the group <i>G</i>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00605-017-1105-3\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-017-1105-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/11/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00605-017-1105-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/11/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Let denote the near-ring of congruence preserving functions of the group G. We investigate the question "When is a ring?". We obtain information externally via the lattice structure of the normal subgroups of G and internally via structural properties of the group G.